Wind-Stress Dust Lifting in a Mars Global Circulation Model: Representation across Resolutions

Chapman, Rhian; Lewis, Stephen; Balme, Matthew and Steele, Liam (2017). Wind-Stress Dust Lifting in a Mars Global Circulation Model: Representation across Resolutions. In: AGU Fall Meeting, 11-15 Dec 2017, New Orleans, USA.

Abstract

The formation of Martian dust storms is believed to be driven by dust lifting by near-surface wind stress (NSWS). Accurately representing this dust lifting within Mars Global Circulation Models (MGCMs) is important in order to gain a full understanding of the Martian dust storm cycle.

Parameterisations of dust lifting by NSWS exist within several MGCMs; implementations differ but they all follow a similar design, so progress within one model is relevant to the entire field. Few studies have explored in detail how the results of these parameterisations can be affected by changing the horizontal resolution of the model.

An accurate parameterisation of dust lifting by NSWS will lift a representative dust mass, reproducing characteristic dust optical depths in the atmosphere. The geographical distribution of the dust lifting by NSWS will also change throughout the year, affecting patterns of dust storm formation and development. Currently, suitable values for dust lifting parameters must be identified at every new model resolution.

Resolutions of ~5° latitude x ~5° longitude are often used to model the Martian climate, as thermal tides and long-term weather patterns can be well represented at this resolution. However, smaller scale phenomena (such as near-surface winds driven by local topography) cannot be accurately depicted at this resolution. We use the LMD-UK MGCM to complete multi-year simulations across multiple model resolutions. Our experiments range from ‘low’ resolution ~5° lat x ~5° lon to ‘high’ resolution ~1° lat x ~1° lon.

In experiments with fixed, constant lifting parameters, we find that higher resolution simulations lift more dust, but that this trend is asymptotic. At low resolutions, dust lifting increases proportionately with the increase in number of horizontal gridboxes. However, at high resolutions, doubling the number of gridboxes results only in a 30% increase in the total dust mass lifted.

Geographical and temporal distributions of dust lifting are investigated, as well as the total dust lifted, in order to assess the optimum parameters for each resolution, and to develop a calibration scheme for this dust lifting across model resolutions. The scheme is verified through comparison with spacecraft observations of dust optical depths and dust storm locations.

Viewing alternatives

Download history

Item Actions

Export

About