
Open Research Online
The Open University’s repository of research publications
and other research outputs

Intuitive querying of e-Health data repositories
Conference or Workshop Item
How to cite:

Hallett, Catalina; Scott, Donia and Power, Richard (2005). Intuitive querying of e-Health data repositories.
In: UK E-Science All-Hands Meeting, 19-22 Sep 2005, Nottingham, UK.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://www.allhands.org.uk/2005/proceedings/papers/336.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.allhands.org.uk/2005/proceedings/papers/336.pdf
http://oro.open.ac.uk/policies.html

Intuitive Querying of e-Health Data Repositories

Catalina Hallett, Richard Power, Donia Scott
Computing Reseacrh Centre

The Open University
{C.Hallett, R.Power, D.Scott}@open.ac.uk

Abstract

At the centre of the Clinical e-Science Framework (CLEF) project is a repository of well organised,
detailed clinical histories, encoded as data that will be available for use in clinical care and in-silico
medical experiments. An integral part of the CLEF workbenchis a tool to allow biomedical re-
searchers and clinicians to query – in an intuitive way – the repository of patient data. This paper
describes the CLEF query editing interface, which makes useof natural language generation tech-
niques in order to alleviate some of the problems generally faced by natural language and graphical
query interfaces. The query interface also incorporates ananswer renderer that dynamically gener-
ates responses in both natural language text and graphics.

1 Background

The Clinical e-Science Framework (CLEF) aims
at providing a data repository of well organised
clinical histories, which can be queried and
summarised both for biomedical research and
clinical care. In this context, the aim of
the query interface is to provide efficient
access to aggregated data for performing a
variety of tasks, e.g., assisting in diagnosis
or treatment, identifying patterns in treatment,
selecting subjects for clinical trials, monitoring
the participants in clinical trials. The intended
users of this service are clinicians, biomedical
researchers, and hospital administrators. Our
current domain is cancer; however, the framework
in principle supports a wide range of clinical
fields.

An analysis of free text queries written by
medical professionals show that they are mostly
very complex and often ambiguous. This makes
the design of the query interface to the CLEF
repository particularly difficult, since our users
will need to construct complex queries containing
conditional and temporal structures.

The CLEF repository of clinical histories
currently contains some 20000 records of cancer
patients, includes codes such as SNOMED
or ICD, and is implemented as a relational
database that stores patient records modeled
on the archetype for cancer developed at UCL

(Kalra et al., 2001). Accessing relational
databases involves expressing queries in a
language that is understood by the database
management system (typically SQL). Direct SQL
querying requires specialist knowledge of the
both the query language and the structure of the
underlying database, and – in the case of medical
databases – usually also knowledge of precise
medical terminology codes. It clearly would
be counter-productive to require this additional
level of technical expertise of the clinicians and
biomedical researchers who want to access the
CLEF repository.

Attempts to overcome this problem in user
interfaces to medical databases have traditionally
made use of graphical devices such as forms,
diagrams, menus, or pointers to communicate to
the user the information content of a database
(e.g., KNAVE (Shahar and Cheng, 1999) and
TrialDB (Deshpande et al., 2001)), and research
shows that they are much preferred over textual
query languages such as SQL, especially by
casual and non-expert users. Nevertheless,
empirical studies have reported high error rates by
domain experts using graphical modelling tools
(Kim, 1990) and a clear advantage of text over
graphics for understanding nested conditional
structures (Petre, 1995).

However, it is also well-known that queries
expressed in free natural language are sensitive

to errors of composition (misspellings,
ungrammaticalities) or processing (at the lexical,
syntactic or semantic level). A further drawback
of natural language interfaces to databases is that
such systems normally understand only a subset
of natural language, and it is not always clear to
casual users which are the valid constructions and
whether the lack of response from the system is
due to the unavailability of an answer or to an
unaccepted input construction. On the positive
side, natural language is far more expressive than
SQL, so it is generally easier to ask complex
questions and manipulate temporal constructions
using natural language than using a database
language.

2 The CLEF query interface

The CLEF query system is designed to answer
questions relating to patterns in medical histories
over sets of patients in the data repository.
The current interface is designed for casual
and moderate users who are familiar with the
semantic domain of the repository but not with
its technical implementation (e.g., clinicians,
medical researchers and hospital administrators).
For the reasons we described above, the guiding
principle in the design of our interface is that its
use requires no prior knowledge of the structure
of the repository, no expertise in database
access languages such as SQL, no familiarity
with medical codes, and only minimal prior
training. Users’ interaction with the CLEF
repository isnot through SQL, or graphics or free
text. Instead, query-construction is performed
by interacting with an automatically-generated
Natural Language feedback text (currently only
English). This interaction method, based on
the WYSIWYM technology developed by Power
et al (Power et al., 1998), allows users of the
profile described above to construct in an intuitive
way, unambiguous, syntactically correct, complex
natural language queries, such as:
(1) What is the average number

of body scans performed in the

first 10 years after initial

diagnosis on individual patients

with adenocarcinoma with squamous

metaplasia who lived more than 10

years but less than 15 years after

the initial diagnosis?

3 Query analysis

3.1 Types of queries

An analysis of real queries from clinical trials and
invented queries supplied by clinicians identified

two general types of queries, as exemplified
below.
(2) For all patients with cancer of

the pancreas, compare the percentage

alive at 5 years for those who had a

course of gemcitabine with those who

didn’t.

(3) What is the average number of

body scans performed in the first

10 years after initial diagnosis

on individual patients with breast

cancer who lived more than 10 years

but less than 15 years after the

initial diagnosis?

In the first example, the expected answer
is a comparison between a certain statistical
measure (in this case, percentage) applied on two
groups of patients differentiated by the treatment
they received. The second example concerns
a statistical measure (average) computed for a
certain parameter (number of investigations of
type ”body scan”) of a group of patients with some
characteristics.

For either of these queries, the attributes
involved in constructing the query can vary within
a certain range: any statistical measure can be
used, the differentiating parameter could be the
diagnosis instead of the treatment, etc.

Additionally, there are a number of variations to
these two main types of queries. For both types,
the user may ask for simple assessment queries
instead of comparisons:
(4) For all patients with cancer of

the pancreas, what is the percentage

alive at 5 years for those who had a

course of gemcitabine?

There are also cases where several similar
queries are combined into one more complex
query:
(5) For all patients with cancer of

the pancreas, compare the percentage

alive at 1, 2 and 5 years for those

who had a course of gemcitabine with

those who didn’t.

For all these queries, there is practically no
limit to the complexity that can be achieved
by using boolean operations. Each diagnosis
description can in fact be a conjunction or
disjunction of diagnoses, and the same applies for
every concept included in a query. Therefore, the
user can construct queries such as:
(6) For all patients with cancer

of the pancreas or of the liver,

compare the percentage alive at 5

years for those who had a course of

gemcitabine and arimidex with those

who didn’t.

The construction of complex queries is
supported by the query editor, and they are
not considered separate types of queries, nor
extensions of the basic types.

3.2 Modeling queries

For presentation reasons, queries have to be
decomposed into constituents that can be easily
edited by the user. By way of exemplification, let
us consider the query type (1). There are three
elements to the query: the set of relevant patients,
defined by aproblem; the partition of this set
according totreatment; and the further partition
according tooutcome, from which the percentages
can be calculated. To avoid long complicated
sentences, we consider a format in which these
elements are presented separately:

Relevant subjects: Patients with
cancer of the pancreas.

Treatment profiles: Patients who
received a course of gemcitabine,
compared with patients who did not.

Outcome measure: Percentage of
patients alive after 5 years.

This breakdown allows the following basic
query pattern:

Relevant subjects: [Some patients]
with [some diagnosis].

Treatment profiles: Patients who
received [some treatment], compared
with patients who did not.

Outcome measure: Percentage of
patients [with some status] [at some
point in time].

Each of the bracketed elements are complex
descriptions that model the concept definition in
the CLEF archetype. For example, the concept
diagnosis consists of the following obligatory
and optional components:tumour name, locus,
type (metastatic, primary, secondary) andTNM
staging code. Each of the subcomponents can be
extended through boolean operations (negation,
conjunction, disjunction).

4 Query editing interface

4.1 General features

Conceptual authoring throughWYSIWYM editing
(Power et al., 1998) alleviates the need for
expensive syntactic and semantic processing of
the queries by providing the users with an

interface for editing the conceptual meaning of a
query instead of the surface text.

The WYSIWYM interface presents the contents
of a knowledge base to the user in the form of
a feedback text. In the case of query editing,
the content of the knowledge base is a yet to
be completed formal representation of the user’s
query. The interface presents the user with
a natural language text that corresponds with
the incomplete query and guides them towards
editing a semantically consistent and complete
query. In this way, the users are able to
control the interpretation that the system gives
to their queries. The user starts by editing
a basic query frame, where concepts to be
instantiated (anchors) are clickable spans of text
with associated pop-up menus containing options
for expanding the query. For example, one can
start constructing a query that asks for a group of
patients fulfilling some conditions by editing the
following description:

Relevant subjects: [some type of
patients] [of a certain age description]
diagnosed with [a certain diagnosis]
Treatment profile: patients who
received [some treatment]
Outcome: [measure] of [patients with
some status] at [some point in time]
from [some index event]

Once the user selects an anchor and a new value
for the concept represented by the anchor, the
semantic representation of the query is updated
and a new text is generated on the basis of
this representation. Each anchor can be a
combination of features or events of the same
type, thus allowing for complex queries, with
nested conditional structures to be built. Some
concept instances can also be typed in manually,
which is useful for numerical values or other fields
with unpredictable content, such as names. This
is also a way of enriching the ontology with new
concepts. Figure 1 is a snapshot of the query
editor with a partially constructed query.

The interface allows the execution of
incomplete queries. The result of a user
selection over the feedback text is treated as an
intermediate query, which is sent to the DBMS.
In return, the DBMS will transmit to the interface
a feedback answer. At this point, the feedback
answer is a set of paired values representing the
number of patient records that match the query
and the percentage from the total number of
records. There is also a further breakdown of
patient records by sex, which was considered a
good discriminatory feature. For example, for an

Figure 1: Query editing snapshot

intermediate query such asNumber of patients
over the age of 60..., the feedback answer could
be 100 records (20% of 500), 55 men (55%), 45
women (45%).

As a further consistency checking mechanism,
the interface provides an additional rendering of
the query in running text, which is performed
once the editing of the feedback query has
been completed, the user is presented with an
alternative natural language query corresponding
to the structure that has been edited (output
query). While the feedback query is rather
schematic to allow for more intuitive editing, the
output query resembles in every respect a free text
query, thus being more natural and easier to read.

The natural language interface is database-
independent, since it does not require any
knowledge of the database structure. The
structure of the database is not only completely
transparent to the user, but also to the interface
developer: changes at the database level require
no changes in the query editor. Queries can be
saved for later re-use, which is particularly useful
for frequent users who formulate queries with
little variance.

4.2 Dealing with ambiguities

Since the processing of an edited query is
deterministic and transparent to the user, the main
challenge is not to construct valid database queries
from edited queries but to ensure that the query
the user is editing corresponds to the intended
meaning. Therefore we want to ensure that the
layout of the query conveys one meaning only to
the user.

The process of defining a specific unambiguous
layout for the queries was based on the analysis

of some real queries that could be given multiple
interpretations. Several categories of possible
ambiguities are presented below, along with the
solution provided by the CLEF query interface.

When the phrase describing a relevance set
includes a conjunction or disjunction, there may
be ambiguity over whether the intended query is
single or multiple. Compare these three patterns:
(7) (a). For all patients with

lung cancer, and for all patients

with breast cancer ...

(b). For all patients with lung

cancer and breast cancer ...

(c). For all patients with lung

cancer or breast cancer ...

Example 6a is likely to be interpreted as two
separate queries, while the others are ambiguous.
Disjunctions like 6c occur often in real life
queries:
(8) For all patients younger than

60 years of age who have either

had bad prognosis myelodysplastic

syndrome only for at least 6

months or acute myelogenous

leukaemia caused by bad prognosis

myelodysplastic syndrome for at

least 6 months, what is the survival

rate...

In this case, it is not clear if separate
answers are required forbad prognosis
myelodysplastic syndrome only and for acute
myelogenous leukaemia caused by bad prognosis
myelodysplastic syndrome, or if it make sense to
give a single answer lumping these two groups
together.
This ambiguity can be avoided inWYSIWYM

feedback texts by using different realisations for

conjunctions/disjunctions that imply multiple
relevance sets, and conjunctions/disjunctions that
do not. For example, we use bulleted lists for the
former, and conjunction words (and, or) for the
latter:
(9) (a) Relevant subjects:
• Patients younger than 60 years

of age who have had bad prognosis
myelodysplastic syndrome only for at
least 6 months
• Patients younger than 60

years of age who have had acute
myelogenous leukaemia caused by bad
prognosis myelodysplastic syndrome
for at least 6 months

(b) Relevant subjects:

• Patients younger than 60 years

of age who have either had bad

prognosis myelodysplastic syndrome

only for at least 6 months or acute

myelogenous leukaemia caused by bad

prognosis myelodysplastic syndrome

for at least 6 months

In 9a we have two relevance sets; in 9b we have
only one.

Similar ambiguities can be found when several
treatment profiles are mentioned, or several
outcome measures. In each case, the ambiguity
can be avoided in theWYSIWYM feedback texts
the same way as before, by using bullets to mark
separate queries.

Descriptions are boolean combinations of
properties. A description can be elaborate either
because it contains many boolean operators,
or because the properties are themselves
complicated. Displaying a large number of
boolean combinations in running prose means
that the scope of the operators can become
ambiguous to the user. For this reason, layout
is used to present boolean combinations more
clearly:

(10) Relevant subjects:

• Patients with the following

properties:

a. They are younger than 60

years of age

AND

b. They have one of these

properties:

b1. They have had bad

prognosis myelodysplastic syndrome

only for at least 6 months

OR

b2. They have had acute

myelogenous leukaemia caused by bad

prognosis myelodysplastic syndrome

for at least 6 months

4.3 Specifying constraints and temporal
relations

Guiding users towards editing correct and
complete queries is essential and is one of the
main points where our approach improves on
classical natural language query interfaces. This is
achieved by defining and implementing a system
of semantic static and dynamic constraints.

Static (or ontological) constraints relate to
the structure of the queries as defined in thequery
model. This includes specifying the super-class
of an instance (for example, the anchorcancer
can only be instantiated with names of cancers),
its type (for example,age is numeric and editable,
while cancer is a static string) and its status
(compulsory vs optional).

Dynamic constraints are triggered at runtime
by the user selection of certain instances. Most
constraints simply serve the role of restricting
the user selection so that the resulting query
is meaningful and intelligible. In other cases,
however, allowing the user to construct queries
without implementing a system of dynamic
constraints could yield ambiguous queries.
Dynamic contraints can be either conceptual,
which are compiled from a medical knowledge
base and represent depedencies between medical
concepts (for example,nephroblastoma is a type
of kidney cancer, so users shouldn’t be allowed
to query fornephroblastoma in the left breast), or
numerical (for example,patients between 60 and
30 years of age is a disallowed construction).

As medical records mirror the evolution in time
of a patient, it is important to be able to access
the patient’s status at a certain point in time. The
easy specification of time in natural language is
an important advantage of natural language query
interfaces over graphical interfaces. All temporal
concepts in the medical record are stamped with
a valid time stamp, i.e. the (precise1) moment in
time when the event took place. Typically, a time
interval is represented as a pair ofstart andend
dates, wherestart andend are discrete time values
of a certain predefined granularity. The query
interface associates specific linguistic expressions
to time intervals. For example,between [date 1]
and [date 2] is interpreted as a closed interval
[date 1, date 2],in [this year] is interpreted
as [01/01/this year, 31/12/this year]. Such time
expressions cover most temporal queries, such
as: patients diagnosed with cancer before 1999,

1to a certain level of granularity imposed by the
representation of time instances in the database

...

Gender Age adenocarcinoma small cell carcinoma squamous cell carcinoma death

1 female 35 true false false true

2 male 41 false true false true

3 male 43 false false true false

4 female 53 true false false false

Figure 2: Example of a result set

patients who received chemotherapy within 5
months of surgery.

5 Answer generation

A typical result set received from the DBMS
consists of lists of patients that fulfilled the
requirements of the query, for each patient having
specified the age, gender, and the values for
each of the query elements. For example, a
query such asSelect all patients between the
ages of 30 and 60 with a clinical diagnosis
of malignant neoplasm of bronchus or lungs
and histopathology diagnosis of adenocarcinoma,
small cell carcinoma or squamous cell carcinoma,
who were alive after 10 years of the diagnosis,
may yield the result set in Fig. 2.

The result set is processed in such a way as to
allow the rendering of various groups of patients
according to the age/gender breakdown and each
individual query term. For each individual search
parameter, the data is split into a dynamically
determined number of age groups, and for each
age group the number of patients is further split
according to their gender. The result set thus
processed is presented to the user in three types
of format: tables, charts and text. Each individual
chart also contains an automatically generated
caption that explains the content of the chart.

The captions are generated using template-
based techniques, where fillers are provided by
the same result set that was used for generating
the chart. For the bar chart in Fig. 3, a fragment
of the explanation provided in the caption reads:
This chart displays the distribution of patients
in 4 age groups according to their gender and
histopathology diagnosis. 42 patients have been
returned as a result to your query:
-in the 29-38 years age group there were 1
patients (0 men and 1 woman): all patients were
diagnosed with adenocarcinoma. [...]
-in the 49-58 age group, there were 27 patients
(14 men and 13 women): 11 were diagnosed
with adenocarcinoma, 5 were diagnosed with
squamous cell carcinoma, 11 were diagnosed with
small cell carcinoma. [...]

6 Conclusions and further work

We have presented in this paper a query interface
to a repository of patient records which makes
use of natural language generation techniques.
The query interface allows the editing of complex
queries and is a viable alternative to natural
language interfaces and visual query interfaces
to medical databases. Answers to queries are
provided in textual format using natural language
generation techniques and also as tables and
charts. The main features that set our approach
apart from other querying interfaces to medical
databases are:

• users require little training for using the
query interface

• a set of semantic constraints are used to guide
users towards constructing valid queries
only, therefore incorrect queries are not
possible

• the constructed queries are unambiguous,
since ambiguity is dealt with in the editing
stages. Therefore, one can always be
sure that no errors have occurred in the
interpretation of the query

• the query interface has wider applicability
then strictly for accessing the current
database, since it is mainly database
independent

Whilst the query editing interface is fully
implemented, extending the range of queries
supported is an ongoing effort. This is performed
in parallel with an evaluation of the usability
and user-friendliness of the interface. It is
expected that the evaluation will help formulate
an extended range of queries and improve the
editing interface. The improved query interface
will provide means of interactively defining
default values for instances that support them
(for example, one may want to default all index
events to the date of the first diagnosis). We also
plan to extend the range of temporal operators to
include, for example, trend operators for clinical

Figure 3: Generated bar chart: histopathology diagnosis/age/gender breakdown

measures that support them (e.g.ascending
blood pressure, stationary haemoglobin count)
and define independent variables for reporting
statistical results (such as age groups, sex,
education level).

References
A. Deshpande, C. Brandt, and P. Nadkarni.

2001. Ad hoc query of patient data:
Meeting the needs of clinical studies.
Journal of the American Medical
Informatics Association, 9(4):369–382.

Dipak Kalra, Anthony Austin, A. O’Connor,
D. Patterson, David Lloyd, and David
Ingram, 2001.Design and Implementation
of a Federated Health Record Server,
pages 1–13. Medical Records Institute for
the Centre for Advancement of Electronic
Records Ltd.

Y. Kim. 1990. Effects of conceptual data
modelling fomalsms on user validation
and analyst modelling of information
requirements. Ph.D. thesis, University of
Minnesota.

M. Petre. 1995. Why looking isn’t always
seeing: readership skills and graphical
programming. Communications of the
ACM, 38(6):33–44.

Richard Power and Donia Scott. 1998.
Multilingual authoring using feedback
texts. InProceedings of 17th International
Conference on Computational Linguistics
and 36th Annual Meeting of the
Association for Computational Linguistics
(COLING-ACL 98), pages 1053–1059,
Montreal, Canada.

Yuval Shahar and Cleve Cheng. 1999.
Intelligent visualization and exploration of

time-oriented clinical data. InProceedings
of HICSS, Maui, Hawaii.

