Copy the page URI to the clipboard
Krishnakumar, E.; Prabhudesa, Vaibhav S. and Mason, Nigel J.
(2018).
DOI: https://doi.org/10.1038/nphys4289
Abstract
Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, in order to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n=2) + H− is asymmetric about the inter-nuclear axis, while the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes and demonstrates the role of coherent effects in electron induced chemistry.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 51663
- Item Type
- Journal Item
- ISSN
- 1745-2481
- Project Funding Details
-
Funded Project Name Project ID Funding Body MIND (Investigation of electron induced chemical control using momentum imaging of negative ions from dissociative electron attachment) 908423 EC Marie Curie FP7 Fellowship Lassie Astrochemistry training network 238258 EC (European Commission): FP (inc.Horizon2020 & ERC schemes) VAMDC 239108 EC (FP7 Infrastructures) - Keywords
- Electron molecule interactions, Coherence, Chemical control,
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2017 Springer Nature
- Depositing User
- Nigel Mason