Copy the page URI to the clipboard
Smith, P. H.; Gow, J. P. D; Pool, P. and Holland, A. D.
(2015).
DOI: https://doi.org/10.1088/1748-0221/10/03/C03041
Abstract
This paper describes the mapping of spectral response of an e2v technologies Swept Charge Device (SCD) CCD236 pre and post irradiation with a 10 MeV equivalent proton fluence of 5.0 × 108 protons cm−2. The CCD236 is a large area (4.4 cm2) X-ray detector which will be used in India's Chandrayaan-2 Large Soft X-ray Spectrometer (CLASS) and China's Hard X-ray Modulation Telescope (HXMT). To enable the suppression of surface dark current, clocking is performed continuously resulting in a linear readout. As such the flat field illumination used to measure any change in spectral response over a conventional Charge-Coupled Devices (CCDs) is not possible. An alternative masking technique has been used to expose pinpoint regions of the device to Mn-Kα and Mn-Kβ X-rays, enabling a local map of spectral response to be built up over the device. This novel approach allows for an estimation of the Charge Transfer Inefficiency (CTI) of the device to be made by allowing the creation of a CTI scatter plot similar to that typically observed in conventional CCDs.