Morphometric characterisation of eskers associated with an extant mid-latitude glacier on Mars.

Evidence for basal melting of modern putative debris-covered glaciers (DCGs) on Mars is extremely rare.

- Modern DCGs are likely frozen to their beds, but has this always been the case?
- Gallagher and Balme [1] identified sinuous ridges in the foreland of a late-Amazonian-aged (~150 Ma) DCG in Phlegra Montes (Figs 1-3).
- They interpreted these ridges as young eskers (Fig 4) – the first of their kind identified in association with a modern DCG on Mars.

Eskers are diagnostic of glacial melting.

- Eskers are ridges of sediment deposited by meltwater in ice-walled, typically subglacial drainage conduits, and subsequently exposed by glacier retreat (Fig 4).
- Their morphology is strongly controlled by the geometry of their parent meltwater conduits which, in turn, is controlled by hydraulic conditions within them [e.g. 2].

We characterise candidate esker morphology with new high-resolution 3D data

Plan-view geometry

<table>
<thead>
<tr>
<th>Segments</th>
<th>Dorsa Argentea, Mars n = 211</th>
<th>Phlegra Montes, Mars n = 414</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Median</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Mean</td>
<td>1.05</td>
<td>1.04</td>
</tr>
<tr>
<td>Max</td>
<td>1.22</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Cross-sectional morphology (Zone 2)

- Similar heights to Icelandic eskers (~1 – 14 m [6]) (Fig 8a).
- Widths more similar to terrestrial eskers (~10s m – 2 km [2,6]) than Dorsa Argentea [4] (Fig 8b).
- Intermediate side slopes between Icelandic eskers (~11-22° [6]) and Dorsa Argentea, Mars [4] (Fig 8c).
- Lower side slopes than terrestrial eskers could result from fundamental differences in subglacial hydrology between Earth and Mars, which should be explored further.

Ongoing work

Phlegra Montes candidate esker morphology

- Tests for esker-like response of ridge height to longitudinal bed slope.
- NEW DCG-linked candidate esker in a similar graben setting
 - Abstract #1234, this conference.
 - Supports the hypothesis that elevated geothermal heat was a pre-requisite for recent basal melting of mid-latitude glaciers on Mars [1].

Modelling environmental conditions required for basal melting in Phlegra Montes

- Exploring atmospheric temperature and geothermal heat scenarios using the JPL/University of California Ice Sheet System Model (ISSM) [8].

References:

Acknowledgements: FEGB is funded by STFC grant ST/N0021X/1 and is grateful for travel support from the 2017 PSI Pierazzo International Student Travel Award. We are grateful to R.D. Storrar for the Canadian esker data.