Copy the page URI to the clipboard
Johnson, Jeffrey; Fortune, Joyce and Bromley, Jane M.
(2017).
DOI: https://doi.org/10.1007/978-3-319-42424-8_8
URL: http://link.springer.com/content/pdf/10.1007%2F978...
Abstract
Systems theory is fundamental to understanding the dynamics of the complex social systems of concern to policy makers. A system is defined as: (1) an assembly of components, connected together in an organised way; (2) the components are affected by being in the system and the behaviour of the systems is changed if they leave it; (3) the organised assembly of components does something; and (4) the assembly has been identified as being of particular interest. Feedback is central to system behaviour at all levels, and can be responsible for systems behaving in complex and unpredictable ways. Systems can be represented by networks and there is a growing literature that shows how the behaviour of individuals is highly dependent on their social networks. This includes copying or following the advice of others when making decisions. Network theory gives insights into social phenomena such as the spread of information and the way people form social groups which then constrain their behaviour. It is emerging as a powerful way of examining the dynamics of social systems. Most systems relevant to policy have many levels, from the individual to local and national and international organisations and institutions. In many social systems the micro, meso and macrolevel dynamics are coupled, meaning that they cannot be studied or modified in isolation. Systems and network science allow computer simulations to be used to investigate possible system behaviour. This science can be made available to policy makers through policy informatics which involves computer-based simulation, data, visualisation, and interactive interfaces. The future of science-based policy making is seen to be through Global Systems Science which combines complex systems science and policy informatics to inform policy makers and facilitate citizen engagement. In this context, systems theory and network science are fundamental for modelling far-from-equilibrium systems for policy purposes.