Citation

URL

https://oro.open.ac.uk/48472/

License

(CC-BY 4.0)Creative Commons: Attribution 4.0

Policy

This document has been downloaded from Open Research Online, The Open University's repository of research publications. This version is being made available in accordance with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding
Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems – cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence.

The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which are concise and topical working reports, case-studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA
Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA
Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences, Budapest, Hungary
Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany
Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland
Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick, Coventry, UK
Jürgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany
Andrzej Nowak, Department of Psychology, Warsaw University, Poland
Hassan Quadat-Ullah, School of Administrative Studies, York University, Toronto, ON, Canada
Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland
Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland
Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems are complex in both their composition – typically many different kinds of components interacting simultaneously and nonlinearly with each other and their environments on multiple levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts, methods and tools of complex systems at all levels of description and in all scientific fields, especially newly emerging areas within the life, social, behavioral, economic, neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields of engineering and computation such as robotics, nano-technology and informatics; third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions aimed at communicating new findings to a large multidisciplinary audience.

More information about this series at http://www.springer.com/series/5394
Non-Equilibrium Social Science and Policy

Introduction and Essays on New and Changing Paradigms in Socio-Economic Thinking
Acknowledgments

This book is one of the main outcomes of the European FP7 FET Open NESS Project, and we are grateful to the Commission for its support. We are particularly grateful to our project officer Ralph Dum for all his input and help.

We are grateful to the many scientists who contributed to our meetings and to the synthesis of ideas in this book.
Contents

Non-Equilibrium Social Science and Policy .. 1
Jeffrey Johnson, Paul Ormerod, Bridget Rosewell, Andrzej Nowak,
and Yi-Cheng Zhang

Economics ... 19
Paul Ormerod

Social Psychology and the Narrative Economy 45
Andrzej Nowak, Marta Kacprzyk-Murawska, and Ewa Serwotka

Sociology and Non-Equilibrium Social Science 59
David Anzola, Peter Barbrook-Johnson, Mauricio Salgado, and
Nigel Gilbert

Geography Far from Equilibrium ... 71
Denise Pumain

Cities in Disequilibrium ... 81
Michael Batty

Global Political Dynamics and the Science of Complex Systems 97
Hilton L. Root

Systems, Networks, and Policy .. 111
Jeffrey Johnson, Joyce Fortune, and Jane Bromley

Towards a Complexity-Friendly Policy: Breaking the Vicious
Circle of Equilibrium Thinking in Economics and Public Policy 135
Flaminio Squazzoni

The Information Economy .. 149
Yi-Cheng Zhang

Complexity Science and the Art of Policy Making 159
Bridget Rosewell
Contents

<table>
<thead>
<tr>
<th>The Complexity of Government</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Fisher</td>
<td></td>
</tr>
<tr>
<td>The Room Around the Elephant: Tackling Context-Dependency in the Social Sciences</td>
<td>195</td>
</tr>
<tr>
<td>Bruce Edmonds</td>
<td></td>
</tr>
<tr>
<td>Global Systems Science and Policy</td>
<td>209</td>
</tr>
<tr>
<td>Ralph Dum and Jeffrey Johnson</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>227</td>
</tr>
</tbody>
</table>