The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495

Ward-Thompson, D.; Pattle, K.; Kirk, J. M.; Marsh, K.; Buckle, J.; Hatchell, J.; Nutter, D. J.; Griffin, M. J.; Di Francesco, J.; André, P.; Beaulieu, S.; Berry, D.; Broekhoven-Fiene, H.; Currie, M.; Fich, M.; Jenness, T.; Johnstone, D.; Kirk, H.; Mottram, J.; Pineda, J.; Quinn, C.; Sadavoy, S.; Salji, C.; Tisi, S.; Walker-Smith, S.; White, G. J.; Hill, T.; Könyves, V.; Palmeirim, P. and Pezzuto, S. (2016). The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495. Monthly Notices of the Royal Astronomical Society, 463(1) pp. 1008–1025.



We present a comparison of Submillimetre Common User Bolometer Array-2 (SCUBA-2) 850-μm and Herschel 70-500-μm observations of the L1495 filament in the Taurus Molecular Cloud with the goal of characterizing the SCUBA-2 Gould Belt Survey (GBS) data set. We identify and characterize starless cores in three data sets: SCUBA-2 850-μm, Herschel 250-μm, and Herschel 250-μm spatially filtered to mimic the SCUBA-2 data. SCUBA-2 detects only the highest-surface-brightness sources, principally detecting protostellar sources and starless cores embedded in filaments, while Herschel is sensitive to most of the cloud structure, including extended low-surface-brightness emission. Herschel detects considerably more sources than SCUBA-2 even after spatial filtering. We investigate which properties of a starless core detected by Herschel determine its detectability by SCUBA-2, and find that they are the core's temperature and column density (for given dust properties). For similar-temperature cores, such as those seen in L1495, the surface brightnesses of the cores are determined by their column densities, with the highest-column-density cores being detected by SCUBA-2. For roughly spherical geometries, column density corresponds to volume density, and so SCUBA-2 selects the densest cores from a population at a given temperature. This selection effect, which we quantify as a function of distance, makes SCUBA-2 ideal for identifying those cores in Herschel catalogues that are closest to forming stars. Our results can now be used by anyone wishing to use the SCUBA-2 GBS data set.

Viewing alternatives

Download history


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions