Copy the page URI to the clipboard
Mackintosh, R. S.
(2016).
DOI: https://doi.org/10.1103/PhysRevC.94.034602
Abstract
Background: In earlier work, inversion of S matrix for 330 MeV 16O on 12C resulted in highly undulatory potentials; the S matrix resulted from the inclusion of strong coupling to states of projectile and target nuclei. L-independent S-matrix equivalent potentials for other explicitly L-dependent potentials have been found to be undulatory.
Purpose: To investigate the possible implications of the undulatory dynamic polarization potential for an underlying L dependence of the 16O on 12C optical potential.
Methods: S matrix to potential, SL
→ V (r), inversion which yields local potentials that reproduce the elastic channel S matrix of coupled channel (CC) calculations, will be applied to the S matrix for 115.9 MeV 16O on 12C. Further, SL for explicitly L-dependent potentials are inverted and the resulting L-independent potentials are characterized and compared with the undulatory potentials found for 16O on 12C.
Results: Some of the undulatory features exhibited by the potentials modified by channel coupling for 115.9 MeV 16O on 12C can be simulated by simple parameterized L-dependent potentials.
Conclusions: The elastic scattering of 16O by 12C is a particularly favorable case for revealing the effective L dependence of the potential modified by channel coupling. Nevertheless, there is no reason to suppose that
undularity is not a generic property leading in many cases to the choice: nucleus-nucleus potentials are (i) smooth and L-dependent, (ii) L-independent and undulatory, or (iii) both.