Copy the page URI to the clipboard
Miller, Charlotte S.; Gosling, William D.; Kemp, David B.; Coe, Angela L. and Gilmour, Iain
(2016).
DOI: https://doi.org/10.1002/jqs.2893
Abstract
A paucity of empirical non-marine data means that uncertainty surrounds the impact of climate change on terrestrial ecosystems in tropical regions beyond the last glacial period. The sedimentary fill of the Bosumtwi impact crater (Ghana) provides the longest continuous Quaternary terrestrial archive of environmental change in West Africa, spanning the last ∼1.08 million years. Here we explore the drivers of change in ecosystem and climate in tropical West Africa for the past ∼540 000 years using pollen analysis and the nitrogen isotope composition of bulk organic matter preserved in sediments from Lake Bosumtwi. Variations in grass pollen abundance (0−99%) indicate transitions between grassland and forest. Coeval variations in the nitrogen isotopic composition of organic matter indicate that intervals of grassland expansion coincided with minimum lake levels and low regional moisture availability. The observed changes responded to orbitally paced global climate variations on both glacial–interglacial and shorter timescales. Importantly, the magnitude of ecosystem change revealed by our data exceeds that previously determined from marine records, demonstrating for the first time the high sensitivity of tropical lowland ecosystems to Quaternary climate change.