Copy the page URI to the clipboard
Milne, Andrew J.; Laney, Robin and Sharp, David B.
(2016).
DOI: https://doi.org/10.1177/1029864915622682
Abstract
Tonal affinity is the perceived goodness of fit of successive tones. It is important because a preference for certain intervals over others would likely influence preferences for, and prevalences of, “higher-order” musical structures such as scales and chord progressions. We hypothesize that two psychoacoustic (spectral) factors—harmonicity and spectral pitch similarity—have an impact on affinity. The harmonicity of a single tone is the extent to which its partials (frequency components) correspond to those of a harmonic complex tone (whose partials are a multiple of a single fundamental frequency). The spectral pitch similarity of two tones is the extent to which they have partials with corresponding, or close, frequencies. To ascertain the unique effect sizes of harmonicity and spectral pitch similarity, we constructed a computational model to numerically quantify them. The model was tested against data obtained from 44 participants who ranked the overall affinity of tones in melodies played in a variety of tunings (some microtonal) with a variety of spectra (some inharmonic). The data indicate the two factors have similar, but independent, effect sizes: in combination, they explain a sizeable portion of the variance in the data (the model-data squared correlation is r2 = .64). Neither harmonicity nor spectral pitch similarity require prior knowledge of musical structure, so they provide a potentially universal bottom-up explanation for tonal affinity. We show how the model—as optimized to these data—can explain scale structures commonly found in music, both historical and contemporary, and we discuss its implications for experimental microtonal and spectral music.