Copy the page URI to the clipboard
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter and Kelleher, Joe
(2016).
DOI: https://doi.org/10.1007/s00339-016-9835-y
Abstract
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.