Biembedding Steiner Triple Systems in Surfaces Using the Bose Construction

Griggs, T. S.; Psomas, C. and Širáň, J. (2015). Biembedding Steiner Triple Systems in Surfaces Using the Bose Construction. Journal of Combinatorial Designs, 23(3) pp. 91–100.

DOI: https://doi.org/10.1002/jcd.21386

Abstract

A uniform framework is presented for biembedding Steiner triple systems obtained from the Bose construction using a cyclic group of odd order, in both orientable and nonorientable surfaces. Within this framework, in the nonorientable case, a formula is given for the number of isomorphism classes and the particular biembedding of Ducrocq and Sterboul (preprint 18pp., 1978) is identified. In the orientable case, it is shown that the biembedding of Grannell et al. (J Combin Des 6, 325–336) is, up to isomorphism, the unique biembedding of its type. Automorphism groups of the biembeddings are also given.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About