Biembeddings of 2-rotational Steiner triple systems

Grannell, Mike and Schroeder, Justin (2015). Biembeddings of 2-rotational Steiner triple systems. Electronic Journal of Combinatorics, 22(2), article no. P2.23.

URL: http://www.combinatorics.org/ojs/index.php/eljc/ar...

Abstract

It is shown that for $v\equiv 1$ or 3 (mod 6), every pair of Heffter difference sets modulo $v$ gives rise to a biembedding of two 2-rotational Steiner triple systems of order 2v+1 in a nonorientable surface.

Viewing alternatives

Download history

Item Actions

Export

About