Copy the page URI to the clipboard
Short, Ian and Walker, Mairi
(2014).
Abstract
Singerman introduced to the theory of maps on surfaces an object that is a universal cover for any map. This object is a tessellation of the hyperbolic plane together with a certain subset of the ideal boundary. The 1-skeleton of this tessellation comprises the edges of an infinite tree whose vertices belong to the ideal boundary. Here we show how this tree can be used to give a beautiful geometric representation of even-integer continued fractions. We use this representation to prove some of the fundamental theorems on even-integer continued fractions that are already known, and we also prove some new theorems with this technique, which have familiar counterparts in the theory of regular continued fractions.