Copy the page URI to the clipboard
Tutt, James; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Rogers, Thomas; Murray, Neil; Holland, Andrew; Weatherill, Daniel; Holland, Karen; Colebrook, David and Farn, David
(2015).
DOI: https://doi.org/10.1117/12.2186630
Abstract
The Off-plane Grating Rocket Experiment (OGRE) is a high resolution soft X-ray spectrometer sub-orbital rocket payload designed as a technology development platform for three low Technology Readiness Level (TRL) components. The incident photons will be focused using a light-weight, high resolution, single-crystal silicon optic. They are then dispersed conically according to wavelength by an array of off-plane gratings before being detected in a focal plane camera comprised of four Electron Multiplying Charge-Coupled Devices (EM-CCDs). While CCDs have been extensively used in space applications; EM-CCDs are seldom used in this environment and even more rarely for X-ray photon counting applications, making them a potential technology risk for larger scale X-ray observatories. This paper will discuss the reasons behind choosing EM-CCDs for the focal plane detector and the developments that have been recently made in the prototype camera electronics and thermal control system.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 44422
- Item Type
- Conference or Workshop Item
- ISSN
- 1996-756X
- Keywords
- cameras; charge-coupled devices; control systems; crystals; electron multiplying charge coupled devices; electronics; observatories; photon counting; photons; rockets
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
-
Centre for Electronic Imaging (CEI)
?? space ?? - Copyright Holders
- © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
- Related URLs
- Depositing User
- David Hall