Copy the page URI to the clipboard
Gotoda, Hiroshi; Pradas, Marc and Kalliadasis, Serafim
(2015).
DOI: https://doi.org/10.1142/S0218127415300153
Abstract
We study the emergence of pattern formation and chaotic dynamics in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high dimensional chaos to periodic pulsed oscillations through low dimensional deterministic chaos with increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.