Copy the page URI to the clipboard
O'Brien, K.; Horne, Keith; Hynes, R.I.; Chen, W.; Haswell, C.A. and Still, M.D.
(2002).
DOI: https://doi.org/10.1046/j.1365-8711.2002.05530.x
Abstract
We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving light curves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fitting time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the soft X-ray transient GRO J1655-40. We find that the optical variability lags the X-ray variability with a mean time delay of 19.3±2.2 s. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fitting disc half-opening angle of
, which is similar to that observed after the previous outburst by Orosz & Bailyn. This disc thickening has the effect of almost entirely shielding the companion star from irradiation at this stage of the outburst.