Copy the page URI to the clipboard
Anderson, Alexandra and Mcmullan, Rachel
(2012).
DOI: https://doi.org/10.4161/worm.20466
Abstract
Animals have evolved multiple strategies for coping with the presence of pathogenic microbes. The best characterized is the immune response where animals activate their physical and cellular defenses to respond to invading microorganisms. However, behavioral changes can also be triggered by exposure to microbes and play an important role in defending many species, including humans, from pathogen attack. In our recent study we demonstrate that, following infection, C. elegans uses the same G-protein signaling pathway in neurons and epithelial cells to coordinate avoidance behaviors and immune responses. Coordination of these responses allows animals to mount an immune response to the immediate threat while simultaneously taking action to remove the pathogen, however, the complicated nature of the mammalian brain and immune system has made it difficult to identify the molecular mechanisms mediating these interactions. With its simple, well described, nervous system and a rapidly growing understanding of its immune system, C. elegans has emerged as an excellent model to study the mechanisms by which animals recognize pathogens and coordinate behavioral and immune responses to infection.