Copy the page URI to the clipboard
Currie, Thomas E.; Bogaard, Amy; Cesaretti, Rudolf; Edwards, Neil R.; Francois, Pieter; Holden, Philip B.; Hoyer, Daniel; Korotayev, Andrey; Manning, Joe; Garcia, Juan Carlos Moreno; Oyebamiji, Oluwole K.; Petrie, Cameron; Turchin, Peter; Whitehouse, Harvey and Williams, Alice
(2015).
DOI: https://doi.org/10.21237/c7clio6127473
Abstract
Agricultural productivity, and its variation in space and time, plays a fundamental role in many theories of human social evolution. However, we often lack systematic information about the productivity of past agricultural systems on a scale large enough to test these theories properly. The effect of climate on crop yields has received a great deal of attention resulting in a range of empirical and process-based models, yet the focus has primarily been on current or future conditions. In this paper, we argue for a “bottom-up” approach that estimates potential productivity based on information about the agricultural practices and technologies used in past societies. Of key theoretical interest is using this information to estimate the carrying high quality historical and archaeological information about past societies in order to infer the temporal and geographic patterns of change in agricultural productivity and potential. We discuss information we need to collect about past agricultural techniques and practices, and introduce a new databank initiative that we have developed for collating the best available historical and archaeological evidence. A key benefit of our approach lies in making explicit the steps in the estimation of past productivities and carrying capacities, and in being able to assess the effects of different modelling assumptions. This is undoubtedly an ambitious task, yet promises to provide important insights into fundamental aspects of past societies, enabling us to test more rigorously key hypotheses about human socio-cultural evolution.