Investigating the Martian atmosphere using the ExoMars 2016 lander

Chapman, R. M.; Lewis, S. R.; Balme, M. R. and Steele, L. J. (2015). Investigating the Martian atmosphere using the ExoMars 2016 lander. In: 4th UK in Aurora Programme Meeting, 15 May 2015, London.

URL: http://www2.le.ac.uk/departments/physics/people/jo...

Abstract

Accurate modelling of the Martian atmosphere is essential both for planning and completing future missions to the Martian surface, and for accurate analysis and interpretation of the data that they return. Large dust storms and local wind patterns can affect spacecraft landing profiles, and the level of dust present in the atmosphere may impact lander performance. The ExoMars 2016 Mission will carry an Entry, Descent and Landing Demonstrator Module (EDM), primarily designed to test the ability of ESA’s lander technology to carry a science package to the surface [1]. The Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team [2] will use the module’s entry and descent trajectory to characterise the structure of the atmosphere along the travelled landing profile, and to determine properties of the atmosphere, such as density and wind speed, over a wide altitude range from the upper atmosphere to the surface. Aerosol abundances, including atmospheric dust, will also be characterised. These combined datasets will enable more accurate predictions of the atmospheric environment that future landers will encounter. EDM’s surface science package, DREAMS (Dust characterisation, Risk assessment, and Environment Analyser on the Martian Surface), includes sensors to measure wind speed and direction, surface temperature, pressure, and the amount of atmospheric dust present near the surface [3]. We will use the descent and surface profile data collected by EDM to verify and improve current Martian atmospheric modelling completed at The Open University, using both the global circulation and mesoscale models.

[1] Forget et al. (2011) Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris.
[2] Ferri et al. (2012) 9th International Planetary Probe Workshop (IPPW9), Toulouse.
[3] Esposito et al. (2013) EPSC Abstracts Vol. 8, EPSC2013-815.

Viewing alternatives

Download history

Item Actions

Export

About