Citation


URL

https://oro.open.ac.uk/43406/

License

None Specified

Policy

This document has been downloaded from Open Research Online, The Open University's repository of research publications. This version is being made available in accordance with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding
Direct E-beam Lithography of PDMS

J. Bowen*, D. Cheneler*, A. P. G. Robinson*

* School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TJ, UK

School of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TJ, UK

Introduction
Poly(dimethylsiloxane) (PDMS) is a versatile material frequently used in the fabrication of micro and nano scale devices. It has a unique combination of properties including excellent thermal and chemical stability and non-toxicity making it an attractive material for use in many fields of science, especially in biomedical research. Its sensitivity to electron radiation [2] has lead to its use as a resist for subsequent substrate patterning [3] albeit generally in a modified form [4-6]. Here we analyze the effects of exposing liquid PDMS to electron radiation over a large range of doses on the resulting elastic modulus and topography. The data shows that PDMS processed using e-beam lithographic techniques is a viable structural material capable of being utilized in the next generation of microfluidic and other micro devices.

Fabrication by E-Beam Lithography
PDMS with a zero shear viscosity of 1 Pa.s was decanted onto a clean Si wafers (IOB Technologies, UK; 2" n-type Si SOI layer) and spun at a frequency of 33.3 Hz for 100 minutes, using a spin-coater (WSB-60 Rapline, Laurel Technologies, USA). The resultant PDMS film thickness were in the range 1.5 μm ± 50 nm and measured using an interferometer (Lahtijoki, Finland). Using the PDMS, the wavelength range 250 - 800 nm. Exposure was carried out using an FE XL30 SFEG field emission scanning electron microscopy (SEM) equipped with a pattern generator for lithography (Rath Eddy Phase). Arrays of 25 squares of 50 x 50 μm was exposed on the sample at a beam energy of 30 keV and beam current 1.02 nA, using the Rathi pattern generator. After exposure the sample was dipped in tape for 10 seconds to remove the unexposed areas of the PDMS from the substrate. Visualisation of topography (see Figs. 1 and 2) was performed using a MicroXAM interferometer (Omniscan, UK).

Experimental Analysis of Topography and Elastic Modulus
Acquisition of topographical and mechanical data were performed simultaneously using a Nanowizard II AFM (PK, UK) operating in force scan mapping mode, at a temperature of 18 °C and a relative humidity in the range 25-35 %. This involved the use of a scanner with a maximum lateral range of 1000 x 1000 μm and a maximum vertical range of 50 μm in conjunction with a Calileam module (PK, UK). Data acquisition was performed using rectangular 130 μm length Si cantilevers (type NSC30/60 Al Mikro Masch, Estonia) having pyramidal tips with 10 nm nominal radius of curvature. Cantilever spring constants were on the order 0.2 N/m and were calibrated according to the method reported by Bowen et al. [7]. Data were acquired at 400 surface locations within the 100 x 100 μm scan area by driving the fixed end of the cantilever using a laser beam. Upon making contact with a surface features, the height of the contact point was recorded, which was converted into a map of surface topography. A Horizton model was fitted to the four separated positions to assess the mechanical response of each exposed region. A maximum compressive load of 5 nN was applied to the surface during data acquisition, which corresponded to a small indentation strain.

The data in Fig. 3 shows how the Young's modulus generally increases with increasing dose. At doses below ca. 150 μC/cm² the PDMS appears to be still mostly liquid-like with the apparent increase in elastic modulus corresponding to a change in the viscoelastic properties of the material. The noise at very low doses suggests that there is local agglomeration of partially cross-linked polymer chains through which the indentation is affected by the proximity of the substrate. The discontinuity at ca. 150 μC/cm² implies a critical cross-linking density at which solidification occurs. Topography data measured with the AFM, as exemplified in Fig. 4, was used to measure the thickness of the PDMS remaining after development. Fig. 5 shows that at doses above the critical value of ca. 150 μC/cm², the resultant thickness plateaus to a value close to that of the liquid film. The noise at doses above ca. 3000 μC/cm² in Fig. 3 is due to swelling effects due to excessive backscattering corresponding to the increase in thickness as seen in Figs. 1 and 2. This suggests that between the limits of 150 μC/cm² and 3000 μC/cm², the PDMS is solid with consistent thickness and resolution and that the Young's modulus is adjustable by three orders of magnitude from 1 MPa to 1 GPa.

Raman Spectroscopy
Large areas of approximately 1 x 1.3 mm were irradiated with electron doses of between 10 and 45,000 μC/cm² at a beam energy of 30 keV and beam currents of between 21 and 760 nA. The X-300 final aperture was opened to increase beam current allowing faster exposures of the extremely large areas required for Raman measurements. The unexposed material was not removed prior to spectroscopy. Raman spectra of specimens were obtained using a Witec Alpha 3000R (LOT Oriel, UK) operating a 0.3 W single frequency 785 nm diode laser (Topica Photonics, Germany) and an Acton SP2300 triple grating monochromator/spectrograph (Princeton Instruments, USA) over the wavenumber range 400 - 3000 cm⁻¹. The excitation wavelength was 488 nm. A 20x, 0.40 numerical aperture objective (OEM) was used. Mean spectra were composited of 100 accumulations, acquiring individual spectra using an integration time of 0.2 s.

The chemical composition of PDMS is shown in Fig. 6. During irradiation, methyl groups are removed allowing the backbone of the polymer chains to become cross-linked. At higher doses, the electrons also cause chain scission and cause other chemical species to form. This is what is observed in Figs. 3 and 5 where we see liquid like PDMS below ca. 150 μC/cm², solidified PDMS between 150 and 3000 μC/cm² and swelling effects above 3000 μC/cm². These core formations and scissions corresponding to changes in phase may be perceivable in the Raman data. The results of the Raman analysis on samples with doses ranging from unexposed to 27517.2 μC/cm² are shown in Fig. 7. There are small peaks forming at higher doses in the highlighted areas in Fig. 7, and while these are weak, they are persistent, suggesting possible new bonds. This will form the basis of future analysis.

Acknowledgements
Lithography was carried out in the Microfabrication Facility supported by Birmingham Science City Creating and Characterising the Next Generation of Advanced Materials (West Midlands Centre for Advanced Materials Project 1). The Atomic Force Microscope and Confocal Raman Microscope used in this research were obtained through Birmingham Science City Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).

References

Fig. 1: Topography of PDMS irradiated with dose range 10-10,000 μC/cm²
Fig. 2: Topography of PDMS irradiated with dose range 50-50,000 μC/cm²
Fig. 3: Effect of dose on Young's modulus
Fig. 4: 3D topology of developed sample
Fig. 5: Effect of dose on resulting film thickness
Fig. 6: Schematic of section of PDMS polymer chain
Fig. 7: Raman spectra – highlighted areas denote regions of interest