Copy the page URI to the clipboard
Elsayed, Ahmed; Al-Dadah, Raya; Mahmoud, Saad; Elshaer, Amr and Bowen, James
(2014).
URL: http://avestia.com/HTFF2014_Proceedings/papers/199...
Abstract
With the availability of waste heat from various power stations and industrial processes, adsorption cooling systems offer advantages compared to mechanical vapour compression systems. The dynamic modelling of such system is very important as it predicts the system performance with time in terms of bed temperature, pressure, cooling capacity and coefficient of performance. Therefore there is a need for a robust simulation platform that can be used to predict the system dynamic performance under various operating conditions and accommodate design changes efficiently. This work exploits Simulink software capabilities to develop such simulation platform and investigate the effects of using different adsorbent materials and cycle times on cooling capacity and coefficient of performance. Results showed that such platform is very effective in comparative studies. Results showed that water/silica gel produce more cooling capacity compared to ethanol/activated carbon adsorbents at short cycle time, while Maxsorb has better performance at longer cycle time as its cooling capacity increases with adsorption time.