Copy the page URI to the clipboard
Kong, Xiang-Tian; Khan, Ammar A.; Kidambi, Piran R.; Deng, Sunan; Yetisen, Ali K.; Dlubak, Bruno; Hiralal, Pritesh; Montelongo, Yunuen; Bowen, James; Xavier, Stéphane; Jiang, Kyle; Amaratunga, Gehan A. J.; Hofmann, Stephan; Wilkinson, Timothy D.; Dai, Qing and Butt, Haider
(2015).
DOI: https://doi.org/10.1021/ph500197j
Abstract
Flat lenses when compared to curved surface lenses have the advantages of being aberration free, and they offer a compact design necessary for a myriad of electro-optical applications. In this paper we present flat and ultrathin lenses based on graphene, the world’s thinnest known material. Monolayers and multilayers of graphene were fabricated into Fresnel zones to produce Fresnel zone plates, which utilize the reflection and transmission properties of graphene for their operation. The working of the lenses and their performance in the visible and terahertz regimes were analyzed computationally. Experimental measurements were also performed to characterize the lens in the visible regime, and a good agreement was obtained with the simulations. This work demonstrates the principle of atom-thick graphene-based lenses, with perspectives for ultracompact integration.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 43149
- Item Type
- Journal Item
- ISSN
- 2330-4022
- Keywords
- graphene; thin lenses; Fresnel zone plates
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2015 American Chemical Society
- Related URLs
- Depositing User
- James Bowen