Copy the page URI to the clipboard
Choi, J.-Y.; Han, C.; Udalski, A.; Sumi, T.; Gaudi, B. S.; Gould, A.; Bennett, D. P.; Dominik, M.; Beaulieu, J.-P.; Tsapras, Y.; Bozza, V.; Abe, F.; Bond, I. A.; Botzler, C. S.; Chote, P.; Freeman, M.; Fukui, A.; Furusawa, K.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Suzuki, K.; Sweatman, W. L.; Suzuki, D.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Skowron, J.; Kozłowski, S.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P.; Almeida, L. A.; DePoy, D. L.; Dong, Subo; Gorbikov, E.; Jablonski, F.; Henderson, C. B.; Hwang, K.-H.; Janczak, J.; Jung, Y.-K.; Kaspi, S.; Lee, C.-U.; Malamud, U.; Maoz, D.; McGregor, D.; Muñoz, J. A.; Park, B.-G.; Park, H.; Pogge, R. W.; Shvartzvald, Y.; Shin, I.-G.; Yee, J. C.; Alsubai, K. A.; Browne, P.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Fang, X.-S.; Finet, F.; Glitrup, M.; Grundahl, F.; Gu, S.-H.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hornstrup, A.; Hundertmark, M.; Jessen-Hansen, J.; Jrgensen, U. G.; Kains, N.; Kerins, E.; Liebig, C.; Lund, M. N.; Lundkvist, M.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Surdej, J.; Tregloan-Reed, J.; Wambsganss, J.; Wertz, O.; Zimmer, F.; Albrow, M. D.; Bachelet, E.; Batista, V.; Brillant, S.; Cassan, A.; Cole, A. A.; Coutures, C.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kubas, D.; Marquette, J.-B.; Menzies, J. W.; Sahu, K. C.; Zub, M.; Bramich, D. M.; Horne, K.; Steele, I. A. and Street, R. A.
(2013).
DOI: https://doi.org/10.1088/0004-637X/768/2/129
Abstract
Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 43048
- Item Type
- Journal Item
- ISSN
- 1538-4357
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set NPRP 09-476-1-078 Qatar National Research Fund (QNRF) FP7/2007-2013 268421 EU - Extra Information
- 7 pp.
- Keywords
- binaries; gravitational lensing
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
-
Centre for Electronic Imaging (CEI)
?? space ?? - Copyright Holders
- © 2013 The American Astronomical Society
- Depositing User
- Colin Snodgrass