Emergence of a secondary rainbow and the dynamical polarization potential for 16O on 12C at 330 MeV

Mackintosh, R. S.; Hirabayashi, Y. and Ohkubo, S. (2015). Emergence of a secondary rainbow and the dynamical polarization potential for 16O on 12C at 330 MeV. Physical Review C, 91(2), article no. 024616.

DOI: https://doi.org/10.1103/PhysRevC.91.024616


Background: It was shown recently that an anomaly in the elastic scattering of 16O on 12C at around 300 MeV is resolved by including within the scattering model the inelastic excitation of specific collective excitations of both nuclei, leading to a secondary rainbow. There is very little systematic knowledge concerning the contribution of collective excitations to the interaction between nuclei, particularly in the overlap region when neither interacting nuclei are light nuclei.
Purpose: Our goals are to study the dynamic polarization potential (DPP) generated by channel coupling that has been experimentally validated for a case (16O on 12C at around 300 MeV) where scattering is sensitive to the nuclear potential over a wide radial range; to exhibit evidence of the nonlocality due to collective coupling; to validate, or otherwise invalidate, the representation of the DPP by uniform renormalizing folding models or global potentials.
Methods: S-matrix to potential, SL → V (r), inversion yields local potentials that reproduce the elastic channel S matrix of coupled channel calculations. Subtracting the elastic channel uncoupled potential yields a local L-independent representation of the DPP. The dependence of the DPP on the nature of the coupled states and other parameters can be studied.
Results: Local DPPs were found due to the excitation of 12C and the combined excitation of 16O and 12C. The radial forms were different for the two cases, but each were very different from a uniform renormalization of the potential. The full coupling led to a 10% increase in the volume integral of the real potential. Evidence for the nonlocality of the underlying formal DPP and for the effect of direct coupling between the collective states is presented.
Conclusions: The local DPP generating the secondary rainbow has been identified. In general, DPPs have forms that depend on the nature of the specific excitations generating them, but, as in this case, they cannot be represented by a uniform renormalization of a global model or folding model potential. The method employed herein is a useful tool for further exploration of the contribution of collective excitations to internuclear potentials, concerning which there is still remarkably little general information.

Viewing alternatives

Download history


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions