Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons

Charlier, B.L.A.; Wilson, C.J.N.; Lowenstern, J.B.; Blake, S.; van Calsteren, P.W. and Davidson, J.P. (2005). Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons. Journal of Petrology, 46(1) pp. 3–32.



Young (<65 ka) explosive silicic volcanism at Taupo volcano, New Zealand, has involved the development and evacuation of several crustal magmatic systems. Up to and including the 26·5 ka 530 km3 Oruanui eruption, magmatic systems were contemporaneous but geographically separated. Subsequently they have been separated in time and have vented from geographically overlapping areas. Single-crystal (secondary ionization mass spectrometry) and multiple-crystal (thermal ionization mass spectrometry) zircon model-age data are presented from nine representative eruption deposits from 45 to 3·5 ka. Zircon yields vary by three orders of magnitude, correlating with the degrees of zircon saturation in the magmas, and influencing the spectra of model ages. Two adjacent magma systems active up to 26·5 ka show wholly contrasting model-age spectra. The smaller system shows a simple unimodal distribution. The larger system, using data from three eruptions, shows bimodal model-age spectra. An older 100 ka peak is interpreted to represent zircons (antecrysts) derived from older silicic mush or plutonic rocks, and a younger peak to represent zircons (phenocrysts) that grew in the magma body immediately prior to eruption. Post-26·5 ka magma batches show contrasting age spectra, consistent with a mixture of antecrysts, phenocrysts and, in two examples, xenocrysts from Quaternary plutonic and Mesozoic–Palaeozoic metasedimentary rocks. The model-age spectra, coupled with zircon-dissolution modelling, highlight contrasts between short-term silicic magma generation at Taupo, by bulk remobilization of crystal mush and assimilation of metasediment and/or silicic plutonic basement rocks, and the longer-term processes of fractionation from crustally contaminated mafic melts. Contrasts between adjacent or successive magma systems are attributed to differences in positions of the source and root zones within contrasting domains in the quartzo-feldspathic (<15 km deep) crust below the volcano.

Viewing alternatives


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions