Copy the page URI to the clipboard
Lladser, Manuel E.; Potočnik, Primož; Širáň, Jozef and WIlson, Mark C.
(2012).
Abstract
We consider random Cayley digraphs of order n with uniformly distributed generating sets of size k. Specifically, we are interested in the asymptotics of the probability that such a Cayley digraph has diameter two as n → ∞ and k = f (n), focusing on the functions f (n) = ⌊nδ⌋ and f(n) = ⌊cn⌋. In both instances we show that this probability converges to 1 as n → ∞ for arbitrary fixed δ ∈ (½, 1) and c ∈ (0,½), respectively, with a much larger convergence rate in the second case and with sharper results for Abelian groups.
Viewing alternatives
Item Actions
Export
About
- Item ORO ID
- 41748
- Item Type
- Journal Item
- ISSN
- 1365-8050
- Keywords
- random digraph; Cayley digraph; degree; diameter
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
- Depositing User
- Jozef Širáň