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ABSTRACT 

Interest in analyses that probe the temporal aspects of learning 

continues to grow. The study of common and consequential 

sequences of events (such as learners accessing resources, 

interacting with other learners and engaging in self-regulatory 

activities) and how these are associated with learning outcomes, 

as well as the ways in which knowledge and skills grow or evolve 

over time are both core areas of interest. Learning analytics 

datasets are replete with fine-grained temporal data: click streams; 

chat logs; document edit histories (e.g. wikis, etherpads); motion 

tracking (e.g. eye-tracking, Microsoft Kinect), and so on. 

However, the emerging area of temporal analysis presents both 

technical and theoretical challenges in appropriating suitable 

techniques and interpreting results in the context of learning. The 

learning analytics community offers a productive focal ground for 

exploring and furthering efforts to address these challenges. This 

workshop, the fourth in a series on temporal analysis of learning, 

provides a focal point for analytics researchers to consider issues 

around and approaches to temporality in learning analytics. 
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K.3.1 [Computers and Education]: Computer Uses in 
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1. WORKSHOP BACKGROUND 
The temporal component of learning has typically been 

underexplored in both applied and research contexts [15, 18, 19]. 

This is a complex issue; temporality involves consideration of 

duration, sequence, pace, and salience of target events [21, 27], in 

addition to consideration of accretion over time [10, 15, 18]. For 

example, while many discussions around MOOCs emphasize 

student retention rates by simply counting students’ online 

actions, the analysis of temporal patterns in the clickstream data 

tracking student actions has the potential to uncover deeper 

insights and provide greater predictive power [4, 13].  

Measures and methods for characterizing and analyzing the 

temporal evolution of dynamics of group interactions are needed 

and emerging [1, 3, 7, 24]. Despite the relative ease of access 

learning analytics researchers have to process data (through log 

files for example), relatively little research has made use of this 

temporal information [24], with most research opting for a 

“coding and count” strategy [as discussed in 25, 28]. With the rise 

of online learning and available trace data, the availability of data 

for analysis is growing [9], but we should be mindful that ‘bigger’ 

is not necessarily ‘richer’; methodological and conceptual work is 

needed to develop analytic approaches that leverage the temporal 

features of these data sets to make increasingly sophisticated 

knowledge claims and diagnostic assessments about learning [23]. 

In addition new approaches are needed to integrate analysis of 

data streams, thereby revealing how phenomena (e.g., mouse 

clicks, utterances, gazes, gestures, persistent representations such 

as diagrams) co-occur, interact, and facilitate learning, and 

furthermore, show how they dynamically affect one another over 

time. Such analyses can help reveal dynamic relationships and 

support the development of theory and design principles [2]. 

We are not only interested in how sequences of click-stream data 

are related to learning outcomes, but why. Moreover, the 

separation of data within clickstreams – which clicks are 

associated, how they are chunked into meaningful sequences, and 

what objects are available to click – are related to a theorized 

account of data representation and segmentation. Greater 

understanding of temporality is key here; the very understanding 

of an ‘episode’ or ‘event’ is tied to temporal notions around the 

demarcation of meaningful segments. Issues are more complex 

yet, in addition to temporal analyses which consider the 

arrangement of events within sequences and the organization of 

multiple events over time, there are those which explore time as a 

continuous flow of events, examining their positioning, rates, and 

duration [20]. Both approaches raise complex questions around 

operationalization and data collection [26].  

Much recent work (for example the use of use of ‘lag sequential 

analysis’ [8, 22] in [used in 5], t-patterns [16, 17] in [14], pattern-

analyses [e.g. used in 12], and Markov models [see recent 

inclusion in the analytic techniques of, 6]) has focused on analysis 
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of recurring sequences and their association with learning. While 

t-pattern analysis can be used to explore longer, more temporally 

separated sequences than LSA and Markov models, all these 

techniques are best suited to relatively short recurring sequences 

and analysis of event transitions [24]. Therefore, other approaches 

will be needed for temporal analysis of accretion and ‘flow’ or 

development over time. For example, in analysis of the unstable 

and evolving nature of topics in dialogue, Introne and Dreschler 

take as their unit of analysis “a sequence of replies, seek[ing] to 

understand how clusters of words in these reply sequences 

change, merge, and split” [11]. Here their interest is in modelling 

the statistical properties of the co-occurrence of words over time, 

as opposed to modelling probabilities based on dictionary entries 

or other corpora. Regardless of focus, fundamental to these 

examples is the bringing together of both analytic and theoretical 

accounts. The learning analytics community offers a productive 

focal ground for exploring and furthering such efforts through its 

positioning at the nexus of learning and analytic concerns. 
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