Copy the page URI to the clipboard
Tiddi, Ilaria; d'Aquin, Mathieu and Motta, Enrico
(2014).
DOI: https://doi.org/10.1007/978-3-319-13704-9_40
Abstract
The main idea behind Linked Data is to connect data from different sources together, in order to develop a hub of shared and publicly accessible knowledge. While the benefit of sharing knowledge is universally recognised, what is less visible is how much results can be affected when the knowledge in one dataset and in the connected ones are not equally distributed. This lack of balance in information, or bias, generally assumed a priori, can actually be quantified to improve the quality of the results of applications and analytics relying on such linked data. In this paper, we propose a process to measure how much bias one dataset contains when compared to another one, by identifying the most affected RDF properties and values within the set of entities that those datasets have in common (defined as the linkset). This process was ran on a wide range of linksets from Linked Data, and in the experiment section we present the results as well as measures of its performance.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from Dimensions- Published Version (PDF) This file is not available for public download
Item Actions
Export
About
- Item ORO ID
- 41685
- Item Type
- Conference or Workshop Item
- ISBN
- 3-319-13703-4, 978-3-319-13703-2
- ISSN
- 0302-9743
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Knowledge Media Institute (KMi)
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Copyright Holders
- © 2014 Springer International Publishing Switzerland
- Depositing User
- Kay Dave