Copy the page URI to the clipboard
Foster, G. L. and Sexton, P. F.
(2014).
DOI: https://doi.org/10.1130/G35806.1
Abstract
Biological productivity and carbon export in the equatorial Atlantic are thought to have been dramatically higher during the last glacial period than during the Holocene. Here we reconstruct the pH and CO2 content of surface waters from the eastern equatorial Atlantic Ocean over the past ~30 k.y. using the boron isotope composition of Globigerinoides ruber (a mixed-layer–dwelling planktic foraminifera). Our new record, combined with previously published data, indicates that during the last glacial, in contrast to today, a strong west to east gradient existed in the extent of air:sea equilibrium with respect to ρCO2 (ΔρCO2), with the eastern equatorial Atlantic acting as a significant source of CO2 (+100 μatm) while the western Atlantic remained close to equilibrium (+25 μatm). This pattern suggests that a five- fold increase in the upwelling rate of deeper waters drove increased Atlantic productivity and large-scale regional cooling during the last glacial, but the higher than modern ΔρCO2 in the east indicates that export production did not keep up with enhanced upwelling of nutrients. However, the downstream decline of ΔρCO2 provides evidence that the unused nutrients from the east were eventually used for biologic carbon export, thereby effectively negating the impact of changes in upwelling on atmospheric CO2 levels. Our findings indicate that the equatorial Atlantic exerted a minimal role in contributing to lower glacial-age atmospheric CO2.