Copy the page URI to the clipboard
Gow, Jason
(2009).
Abstract
Since the dawn of the space age the ability to capture images from orbit and deep space missions has proved invaluable. Interference caused by the Earth’s atmosphere is bypassed, thus allowing for the detailed observation of distant and faint objects that would be hard to detect using ground based observatories. However, this method introduces a number of new problems, these include placing the spacecraft into a viable and suitable orbit, pointing stability, data retrieval, power consumption, and problems associated with the vacuum of space, micrometeoroids, orbital debris, and the thermal and radiation environment.
The focus of this thesis is concerned with ensuring high energy resolution from the swept charge devices (SCDs), essentially a non-pixellated version of the charge coupled device (CCD), for use in the Chandrayaan-1 X-ray Spectrometer (C1XS). C1XS, launched onboard Chandrayaan-1, was designed to detect the X-ray fluorescence, caused by solar flares, from the lunar surface. To ensure the instrument was a success a radiation damage study was performed, making recommendations on device operating conditions, instrument design and the future development of the SCD. A full device characterisation and the assistance provided to the C1XS science teamare also discussed.
Viewing alternatives
Download history
- Download Final Version (PDF / 3MB)
-
['doc_cite_thesis_' not defined] (PDF)
This file is not available for public download