Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates

Kemp, David B. and Sadler, Peter M. (2014). Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates. Sedimentology, 61(5) pp. 1286–1297.

DOI: https://doi.org/10.1111/sed.12112

Abstract

Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter-related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems, and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19,000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea-level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sealevel by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea-level rise. Differences between the rates of carbonate accumulation and sea-level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give-up mode) pervasive during peak Early Holocene sea-level rise, followed by a switch to catch-up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over timespans much greater than 100 kyr, and at these timespans, rates primarily reflect long-term tectonically mediated accommodation space changes rather than shorter-term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, temper the utility of this, and other, compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About