Copy the page URI to the clipboard
Medvedev, Ni. I.; Dallérac, G.; Popov, V. I.; Rodriguez Arellano, J. J.; Davies, H. A.; Kraev, I. V.; Doyère, V. and Stewart, M. G.
(2014).
DOI: https://doi.org/10.1007/s00429-012-0488-0
Abstract
The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N-methyl-D-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 39343
- Item Type
- Journal Item
- ISSN
- 1863-2661
- Project Funding Details
-
Funded Project Name Project ID Funding Body The Role of Multi-innervated Dendritic Spines in Memory Formation in Ageing BB/J021687/1 BBSRC (Biotechnology and Biological Sciences Research Council) Not Set FPVI Promemoria Contract No. 512012 EU - Keywords
- In vivo LTP and LTD; Electron microscopy 3-D reconstructions; Multiple spine boutons (MSB)
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Copyright Holders
- © 2012 Springer-Verlag Berlin Heidelberg
- Depositing User
- Michael Stewart