The influence of global self-heating on the Yarkovsky and YORP effects

Rozitis, B. and Green, S. F. (2013). The influence of global self-heating on the Yarkovsky and YORP effects. Monthly Notices of the Royal Astronomical Society, 433 pp. 603–621.

DOI: https://doi.org/10.1093/mnras/stt750

Abstract

In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of global self-heating that occurs within the large concavities of irregularly shaped asteroids, which has been neglected or dismissed in all previous models. It is also combined with rough surface thermal-infrared beaming effects, which have been previously shown to enhance the Yarkovsky orbital drift and dampen on average the YORP rotational acceleration by orders of several tens of per cent. Tests on all published concave shape models of near-Earth asteroids, and also on 100 Gaussian random spheres, show that the Yarkovsky effect is sensitive to shadowing and global self-heating effects at the few per cent level or less. For simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and global self-heating effects. Its sensitivity increases with decreasing relative strength of the YORP rotational acceleration, and does not appear to depend greatly on the degree of asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that produced by shadowing effects. It also ensures that at least one critical obliquity angle exists at which zero YORP rotational acceleration occurs. Global self-heating must be included for accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If global self-heating effects are not included, then it is found in ~75 per cent of cases that better predictions are produced when shadowing is also not included. Furthermore, global self-heating has implications for reducing the sensitivity of the YORP effect predictions to detailed variations in an asteroid's shape model.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About