Copy the page URI to the clipboard
Dommett, Eleanor J. and Rostron, Claire L.
(2013).
DOI: https://doi.org/10.1016/j.bbr.2012.10.025
Abstract
The spontaneously hypertensive rat (SHR) is one proposed animal model of attention deficit hyperactivity disorder (ADHD) argued to show strong face validity on the basis of behavioural characteristics. However, SHR may have fundamental alterations to the sensitivity of fluid reward due to altered renal function that has the potential to affect performance in complex reinforced behavioural tests. This could particularly confound determination of operant motivational alterations in the SHR. We assessed baseline bodyweight, home cage lab chow and water intake in the SHR and their typical control strains: Wistar and Wistar Kyoto. We also assessed sucrose preference, and appetitive and consummative positive and negative contrast for sucrose (4% versus 20%) on a motivational runway. As expected, SHR showed enhanced water intake compared to Wistar and Wistar Kyotos but comparable lab chow intake at baseline. SHR exhibited sucrose preference for 4% and 20%, as did both control strains, but the preference for 4% was enhanced in the SHR. SHR showed significant negative and positive contrast in sucrose consumption on the runway, as did Wistar Kyotos. Wistars exhibited neither. Appetitive contrast was not measurable in the SHR due to a robust locomotor velocity increase at the age of testing. The enhanced fluid intake found in the SHR argues against using fluid reinforcers in behavioural tests. We suggest the presence of both forms of contrast in the SHR is unusual for rats tested in ad lib. food conditions while the contrast pattern in Wistars indicate abnormalities in reward sensitivity in this control strain.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 35652
- Item Type
- Journal Item
- ISSN
- 1872-7549
- Keywords
- reward; SHR; ADHD; dopamine; motivation; drinking
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Neuroscience Research Group
- Copyright Holders
- © 2012 Elsevier B.V.
- Depositing User
- Ellie Dommett