Vacancy-mediated dopant diffusion activation enthalpies for germanium

Chroneos, A.; Bracht, H.; Grimes, R. W. and Uberuaga, B. P. (2008). Vacancy-mediated dopant diffusion activation enthalpies for germanium. Applied Physics Letters, 92(17) p. 172103.

DOI: https://doi.org/10.1063/1.2918842

URL: http://apl.aip.org/resource/1/applab/v92/i17/p1721...

Abstract

Electronic structure calculations are used to predict the activation enthalpies of diffusion for a range of impurity atoms (aluminium, gallium, indium, silicon, tin, phosphorus, arsenic, and antimony) in germanium. Consistent with experimental studies, all the impurity atoms considered diffuse via their interaction with vacancies. Overall, the calculated diffusion activation enthalpies are in good agreement with the experimental results, with the exception of indium, where the most recent experimental study suggests a significantly higher activation enthalpy. Here, we predict that indium diffuses with an activation enthalpy of 2.79 eV, essentially the same as the value determined by early radiotracer studies.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About