Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content

Hanson, C. Jane; Bootman, Martin D.; Distelhorst, Clark W.; Wojcikiewicz, Richard J. H. and Roderick, H. Llewelyn (2008). Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium, 44(3) pp. 324–338.

DOI: https://doi.org/10.1016/j.ceca.2008.01.003

Abstract

Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca2+ within cells. In particular, Bcl-2 has been demonstrated to inhibit the release of Ca2+ from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca2+ release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T. Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca2+ homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca2+ responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca2+ responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca2+ uptake by raising the threshold cytosolic Ca2+ concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca2+ in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Ca2+ pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP3Rs) in our cells, and to modify the profile of InsP3R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca2+ signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP3Rs.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About