Orthogonalization of vectors with minimal adjustment

Garthwaite, Paul H.; Critchley, Frank; Anaya Izquierdo, Karim and Mubwandarikwa, Emmanuel (2012). Orthogonalization of vectors with minimal adjustment. Biometrika, 99(4) pp. 787–798.

DOI: https://doi.org/10.1093/biomet/ass041


Two transformations are proposed that give orthogonal components with a one-to-one correspondence between the original vectors and the components. The aim is that each component should be close to the vector with which it is paired, orthogonality imposing a constraint. The transformations lead to a variety of new statistical methods, including a unified approach to the identification and diagnosis of collinearities, a method of setting prior weights for Bayesian model averaging, and a means of calculating an upper bound for a multivariate Chebychev inequality. One transformation has the property that duplicating a vector has no effect on the orthogonal components that correspond to nonduplicated vectors, and is determined using a new algorithm that also provides the decomposition of a positive-definite matrix in terms of a diagonal matrix and a correlation matrix. The algorithm is shown to converge to a global optimum.

Viewing alternatives


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions