A search for H₂ emission in bipolar nebulae and regions of interstellar shock

J. P. Phillips¹, G. J. White¹, and R. Harten²

¹ Physics Department, Queen Mary College, Mile End Road, London E1 4NS, England
² Netherlands Foundation for Radio Astronomy, Oude Hoogeveensedijk 4, 7990 AA Dwingeloo, The Netherlands

Received June 18, accepted October 10, 1984

Summary. We report a H₂ emission survey of five bipolar outflow sources (NGC 1333, M2-9, As 353, S106, V645 Cyg), and one region of shock interaction between an H ii region and molecular cloud (NGC 281). Two of the sources (M2-9, NGC 1333) were detected in the v = 1 − 0S(1), and Q branch transitions of H₂, and we provide a detailed analysis and modelling for these cases. The probable mass of shocked H₂ is shown to range between 1.4 × 10⁻⁶ and 4.2 × 10⁻⁶M☉ for M2-9, and approximately 2.5 × 10⁻⁴ and 1.9 × 10⁻³M☉ in the case of NGC 1333, although the latter values may require increasing by a factor of a few when due allowance is made for extinction. A detailed analysis for the core of M2-9 indicates that the ionised zone is extremely compact, and our Brackett line measurements support other evidence in suggesting a high core extinction, large emission measure E ~ 4 × 10¹⁰ cm⁻⁶ pc, and a projected angular radius θ ~ 0.04. Similarly, it is apparent from the H₂S(1) line strength that the core expansion velocity must be low and less than ≈ 1 km s⁻¹ (a constraint which is also required on dynamical grounds). Finally, CO J = 3 − 2 observations of the source failed to detect emission above a 2σ limit of T⁰ ≈ 0.4 K, and this is shown to imply a probable expansion timescale ≤ 2 × 10³ yr.

Key words: bipolar nebulae – infrared spectroscopy – H₂ emission

1. Introduction

Energetic bipolar outflow sources have recently been observed in association with a large proportion of both young and evolved stars (cf. Cohen, 1983; Lada, 1984). In the case of pre-main-sequence and young stellar outflows it appears that the mass flow is collimated by high density toroids and accretion discs, and similar structures may indeed be relevant to all categories of this phenomenon (cf. Konigl, 1982; Snell et al., 1980; Ikejim, 1981; Torrelles et al., 1983). The momentum outflow rate is frequently extremely large, of order ~ 10⁻¹ to 10⁻³M☉yr⁻¹ km s⁻¹ (corresponding to a total mechanical outflow energy ≈ 10⁻¹⁰L☉), some ~ 10²–10⁶ times greater than can be accounted for through direct radiative acceleration alone; although multiple scattering of the emergent IR flux may increase momentum coupling in envelopes with high optical depth (Phillips and Beckman, 1980).

The velocities of the outflow material are similarly large, of order ~ 10³ km s⁻¹ for ionised gas and ~ 10⁵ km s⁻¹ for molecular flows. The interaction of this high velocity gas with ambient disc and placental material leads in turn to a wide variety of shock phenomena, including Herbig-Haro nebulosities, multiple optically thick CO line components (cf. Phillips et al., 1982), and enhanced H₂ quadrupole emission (cf. Simon and Joyce, 1983; Bally and Lada, 1982); although questions still remain concerning dissociation of H₂ at the high velocities relevant to these sources (Shull and Beckwith, 1982).

The H₁ masses associated with evolved stellar outflows are considerably lower than for protostellar sources, although many of the same phenomena appear also to occur in these cases. Outflow velocities are substantial (cf. Walsh, 1981; Meaburn and Walsh, 1980a), and the preferentially large central extinctions in at least two nebulae (NGC 6302 and M2-9) may indicate the presence of similar toroidal collimating structures. The morphology of NGC 6302 is suggestive of an extended shock interface between neutral and ionised material (cf. Meaburn and Walsh, 1980b; Barral et al., 1982), and shocked H₂ quadrupole emission is seen in several such nebulae, including CRL 618, CRL 2688 (Beckwith et al., 1978; Thronson, 1981), and the core of NGC 6302 (Phillips et al., 1983). As we will see later, there is also evidence for centrally confined H₂ emission in M2-9. In short, the characteristics which distinguish pre- and post-main-sequence biconical nebulae are relatively few, and it is conceivable that several borderline cases may be mis-classified.

The incidence of relatively high levels of H₂ near-infrared emission in bipolar sources has prompted the present search for quadrupole lines in four young stellar outflows [NGC 1333 (HH7-11), As 353, S106, and V645 Cyg], a probable post-main-sequence biconical structure (M2-9), and NGC 281, a region where an expanding H₁ zone appears to be interacting with an adjoining H₁ cloud. The measurements of NGC 281 employed a cooled grating spectrometer with a resolution λ/Δλ = 273, mounted on the United Kingdom Infrared Telescope (UKIRT), whilst the remaining sources were investigated with circular variable filter spectrometers at resolutions of 1% (λ ~ 4 μm) and 1.3% (λ ~ 2 μm). All spectra were calibrated using stars at similar elevations.

2. Discussion

Details of our results are provided in Table 1, together with various inferred parameters. In most cases molecular hydrogen was not detected to fairly low levels, and this permits relatively stringent upper limits to be placed on the masses of shocked H₂. For this purpose we have generally taken

\[M(H_2) = \frac{Q(T_e)E_a X T_e M_{H_2} F_{a1} 4\pi D^2}{g_a h \nu_a}, \quad (1) \]
Table 1. Summary of observations

<table>
<thead>
<tr>
<th>Source</th>
<th>α H:M:S</th>
<th>B</th>
<th>By W.cm⁻²</th>
<th>Ba W.cm⁻²</th>
<th>H₂S(1) W.cm⁻²</th>
<th>H₂ CO W.cm⁻²</th>
<th>2.15 μm Continuum W.cm⁻² μm⁻¹</th>
<th>Beam Arcsecs</th>
<th>Distance kpc</th>
<th>M(H₂) Tₑₓ=10³K</th>
<th>M(H₂) Tₑₓ=2×10³K</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC281</td>
<td>00:49:28.8</td>
<td>+56:17:35</td>
<td>-</td>
<td>-</td>
<td><1.4×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>2.1</td>
<td><7.5×10⁻⁷</td>
<td><1.2×10⁻⁸</td>
</tr>
<tr>
<td>NGC1333</td>
<td>03:25:58.2</td>
<td>+31:05:46</td>
<td>-</td>
<td>-</td>
<td><2.2×10⁻²⁰</td>
<td>6.2×10⁻²⁰</td>
<td>1.4×10⁻¹⁷</td>
<td>12</td>
<td>0.55</td>
<td>2.5×10⁻⁴</td>
<td>1.9×10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>12°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.3×10⁻²⁰</td>
<td><4.7×10⁻¹⁹</td>
<td>12</td>
<td>0.55</td>
<td>3.9×10⁻⁶</td>
<td>3.9×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12°S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><8×10⁻²¹</td>
<td><2.9×10⁻¹⁹</td>
<td>12</td>
<td>0.55</td>
<td>3.9×10⁻⁶</td>
<td>2.4×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12°W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.2×10⁻²⁰</td>
<td><5×10⁻¹⁹</td>
<td>12</td>
<td>0.55</td>
<td>3.6×10⁻⁶</td>
<td>3.6×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12°E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.2×10⁻²⁰</td>
<td><3.1×10⁻¹⁹</td>
<td>12</td>
<td>0.55</td>
<td>3.6×10⁻⁶</td>
<td>3.6×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>M2-9</td>
<td>17:02:52.6</td>
<td>-10:04:31</td>
<td>1.8×10⁻¹⁹</td>
<td>8.1×10⁻¹⁹</td>
<td>7.1×10⁻¹⁹</td>
<td>-</td>
<td>6.2×10⁻¹⁷</td>
<td>8</td>
<td>1.0</td>
<td>1.4×10⁻⁶</td>
<td>4.2×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>8°N</td>
<td><4.6×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td><4.6×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>1.0</td>
<td><8.9×10⁻⁸</td>
<td><2.7×10⁻⁹</td>
</tr>
<tr>
<td>AS 353</td>
<td>19:18:08.0</td>
<td>+10:56:20</td>
<td><2.9×10⁻²⁰</td>
<td>-</td>
<td><2.9×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>0.15</td>
<td><8.0×10⁻⁹</td>
<td><1.2×10⁻¹⁰</td>
</tr>
<tr>
<td></td>
<td>20°E5°S</td>
<td><6.6×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td><6.6×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>0.15</td>
<td><1.8×10⁻⁸</td>
<td><2.8×10⁻¹⁰</td>
</tr>
<tr>
<td>S106</td>
<td>20:25:33.8</td>
<td>+37:12:52</td>
<td>4.2×10⁻¹⁸</td>
<td>-</td>
<td><4×10⁻¹⁹</td>
<td>-</td>
<td>1.35×10⁻¹⁶</td>
<td>12</td>
<td>0.5</td>
<td><1.2×10⁻⁶</td>
<td><1.9×10⁻⁸</td>
</tr>
<tr>
<td></td>
<td>30°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><3.7×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>0.5</td>
<td><1.1×10⁻⁷</td>
<td><1.8×10⁻⁹</td>
</tr>
<tr>
<td>V645 CYG</td>
<td>21:38:10.6</td>
<td>+50:00:43</td>
<td><1.2×10⁻¹⁹</td>
<td>-</td>
<td><1.2×10⁻¹⁹</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>6.0</td>
<td><5.3×10⁻⁵</td>
<td><8.2×10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>12°S</td>
<td><5×10⁻²⁰</td>
<td>-</td>
<td><5×10⁻²⁰</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>6.0</td>
<td><2.5×10⁻⁵</td>
<td><3.8×10⁻⁷</td>
</tr>
</tbody>
</table>
indicate high levels of shock compression (Israel and Felli, 1978; Bally and Scoville, 1982). Our spectrum of this source however shows no strong evidence for H$_2$ emission, although By is clearly seen above a strong dust continuum (Fig. 1). In this respect, our results confirm the low resolution spectra of Eiroa and Hefele (1983), and the very much higher resolution spectra of Tokunaga and Thompson (1979). As 353 by way of contrast appears to represent a very much less massive structure centred on a probable T-Tauri star. The CO outflow lobes range in velocity up to \sim13 km s$^{-1}$, implying a mass loss rate \sim7\times10$^{-8}$ M$_{\odot}$ yr$^{-1}$ (Edwards and Snell, 1982). The presence of such high mass outflows is extremely difficult to account for with our present suite of mass ejection models (De Campli, 1980), although the absence of H$_2$ is in line with a previous survey of such stars by Beckwith et al. (1978a), which showed detected emission in only one out of five measured T-Tauri stars.

V645 Cyg appears to represent a significantly more massive and luminous (\sim106 L$_{\odot}$) star of spectral class \sim09V. The CO outflow extends over a velocity range \sim15 km s$^{-1}$ (Rodriguez et al., 1981), which corresponds to a momentum outflow rate \geq2.1\times1045 erg (Rodriguez et al., 1982). The powering source is associated with a star-like condensation N0 (Harvey and Lada, 1980), which is in turn adjoined by the polarised reflecting nebulae N1 and N2 (Cohen, 1977). Our measuring aperture was centred upon N0, but we again detected no mass of shocked H$_2$ exceeding \sim5\times10$^{-5}$ M$_{\odot}$. A spectrum for the 12$^\circ$S position is illustrated in Fig. 2.

Finally, NGC 281 was measured with a CGS at the position of the maser found by Elmegreen and Lada (1978). This region has been discussed in detail by both Elmegreen and Lada (1978) and Elmegreen and Moran (1979). CO line profiles, visual imaging, maser activity, and a range of other evidence points to high levels of local H$_2$ compression, triggered star formation, and shock activity, although our measurements again failed to detect the H$_2$S1(1) 2.1 μm line above a 2σ significance level of 1.4\times10$^{-20}$ W cm$^{-2}$, implying correspondingly low masses of shock heated gas.

M2-9 and NGC 1333 were respectively detected in the V = 1 – 0 S(1) and Q branch transitions of H$_2$, and we discuss the implications of these results in Sect. 3 and 4.

3. NGC 1333

The region of NGC 1333 is widely strewn with Herbig-Haro nebulousities, and newly formed and forming stars. Q branch H$_2$ emission was detected in association with the maser HH7-11 A (Haschick et al., 1980), which may (within errors) also coincide with the infrared point source SSV13 (Sandell and Olofsson, 1981; Cohen and Schwartz, 1983). Directed towards this is a line of nebulousities HH7-11 which have already been found by Simon and Joyce (1983) to have strong associated H$_2$S1(1) emission. Two other masers (B and C) are also located in the vicinity of the source, at the edge of a dense NH$_3$ condensation \sim2' across, and it is clear that we are witnessing extensive local star-formation, and a widespread and complex interaction between stellar outflows and the local molecular material. Whilst the overall dynamics of this region are quite clearly far from simple (Haschick et al., 1980), the alignment of HH7-11 with SSV13 (HH7-11A) and a bipolar molecular outflow source (Snell and Edwards, 1981) is suggestive of a common causative link, as noted by Cohen (1982). It is probable that a stellar wind outflow is again being directed into a biconical configuration, with consequent extensive shock activity.
Our spectrum for the source is illustrated in Fig. 5, where the \(Q \) branch emission is seen to be superimposed on a relatively strong and slowly rising continuum. From Kwan (1977) we note that for a pre-shock density \(n_0 \), and shock velocity \(V_s \), the \(S(1) \) line strength is approximately given through

\[
S(1) = 3 \times 10^{-3} (n_0 / 10^5) \left(24 / V_s \right)^{-1.7} \text{erg cm}^{-2} \text{s}^{-1} \text{sr}^{-1},
\]

where the comparatively shallow variation of \(S(1) \) with \(V_s \) results from partial collisional dissociation of \(H_2 \) between \(V_s \sim 15 \text{ km s}^{-1} \) and \(V_s = 25 \text{ km s}^{-1} \). Since the corresponding model \(Q \) branch intensity \(\Sigma Q \) [which covers the \(V = 1 \sim 0 \) \(Q(1), Q(2), \) and \(Q(3) \) lines] is of order \(\sim 1.4 S(1) \), it can be readily shown that

\[
\frac{dM}{dt} = 9.6 \times 10^{-37} (V_s / 24 \text{ km s}^{-1})^{-0.7} \Sigma Q M_\odot \text{ yr}^{-1}
\]

for a spherical shock outflow, where \(dM/dt \) is the rate of mass influx into the shock. This influx must in turn match the ram pressure of the stellar wind (velocity \(V_w \)), and it follows that the stellar wind mass-loss rate is then given through

\[
\frac{dM_w}{dt} = 1.1 \times 10^8 \left[\frac{D}{\text{kpc}} \right]^2 \left[\frac{V_s}{V_w} \right] \left[\frac{V_s}{24 \text{ km s}^{-1}} \right]^{-0.7 \Sigma Q M_\odot \text{ yr}^{-1}},
\]

where \(\Sigma Q \) erg cm\(^{-2} \) s\(^{-1} \) is the extinction corrected flux at Earth, and \(D \) is again source distance.

Assuming \(V_s \sim 20 \text{ km s}^{-1}, D = 0.55 \text{ kpc} \) and \(V_s / V_w \sim 10^{-2} \), then results in a mass-loss rate \(dM_w / dt \sim 2 \times 10^{-7} M_\odot \) yr\(^{-1} \). Note, however, that this estimation is a lower limit, and does not account for extinction. Similarly, it does not allow for material escaping into the bipolar flow, which is presumably responsible for the more widespread (and possibly less extincted) emission of Simon and Joyce. Although the precise dynamics of this region are therefore speculative, the observed levels of \(\Sigma Q \) are reasonably in accord with those expected for a standard spherical shock and source outflow model, for which mass-loss rates are comparable to those of other, similar nebulae.

Some indication that overall levels of extinction may be quite substantial is provided through the \(\Sigma Q / S(1) \) upper limit ratio. Our present observations imply \(\Sigma Q / S(1) \gtrsim 2.8 \), significantly greater than predicted by shock models (the results of Kwan (1977) can be shown to imply \(\Sigma Q / S(1) \sim 1.4 \), and Hohenbach and Shull (1977) suggest values \(\sim 2-1.4 \) for \(V_s \) between 6 and 14 km s\(^{-1} \)). Extinction corrected measures of this ratio vary from 1.9 for NGC 7027 (Smith et al., 1981), to 1.75 for OM C1 (Davis et al., 1982), and if we adopt a mean value \(\Sigma Q / S(1) \sim 1.8 \), then the observed upper limit for NGC 1333 would require \(A_v \sim 28 \text{ mag} \) (note that atmospheric features are unlikely to strongly compromise either the present values of \(\Sigma Q \), or the comparable estimates for NGC 7027 or OM-C1, all of which were taken at altitudes where the relevant telluric lines are weak. Similarly, although the nearby maser HH7-11 B does appear to be associated with a highly compact, weak radio continuum source, no similar emission has been observed in association with HH7-11 A (Haschick et al., 1980). In consequence, contamination of our results by H\(\alpha \) 20 – 5 through 22 – 5 is likely to be negligible). There are other indicators that extinction towards the central IR source is reasonably high. C\(^{18}\)O mapping by Schwartz et al. (1983) indicates a local hydrogen column density \(N(H_2) \sim 4 \times 10^{21} \text{ cm}^{-2} \), implying \(A_v \sim 4 \text{ mag} \), although the peak in \(N(H_2) \) (\(\sim 6 \times 10^{21} \text{ cm}^{-2} \)) occurs approximately 2" to the northeast of this source. This rather low value for \(A_v \) is almost certainly the large (diffraction limited) beamsize of 65" employed for these measures. Infrared spectroscopy (Cohen and Schwartz, 1983) by way of contrast shows a clear silicate absorption feature, which would at a minimum suggest \(A_v \sim 11 \text{ mag} \) (for \(A_v / \alpha_{10} \sim 12 \), and no appreciable emission from the absorbing grains). More realistic modelling for power-law (\(n \propto r^{-p} \)) grain density distributions has been outlined by Mitchell and Robinson (1981), and these imply an outer dust shell radius \(\sim 10^3 R_\odot \) (where \(R_\odot \) is the stellar radius), given an inner grain temperature \(T_g \sim 10^3 K \). The corresponding 1 \(\mu \)m extinction would then range between \(\tau \sim 20 \) and \(\tau \sim 70 \), for \(\beta < 2 \). It is entirely conceivable therefore that the large value of \(\Sigma Q / S(1) \) is due to appreciable levels of extinction, and that the estimates of \(M(H_2) \) and \(dM_w / dt \) must be correspondingly jumped-up by a factor of a few.

Having said this, it may be noted that a U.V. cascade model (cf. Black and Dalgarno, 1976) would predict a ratio \(\Sigma Q / S(1) \sim 2.8 \) – very close to our upper limit. Similarly, our observations imply a parametric ratio

\[
I = \frac{(Q(1) + Q(2) + Q(3) - 0.33(Q(7) + Q(6)))}{Q(4) + Q(5) - 0.67(Q(7) + Q(6))} \sim 1.4 \pm 0.3,
\]

which would be quite at variance with a simple shock excitation mechanism. Our own calculations show that \(I \) varies from 5.8 through to 2.8 for values of \(T_g \), ranging from \(10^3 \text{ K} \) to \(3 \times 10^4 \text{ K} \), and similar values are also predicted by the various shock models; from Kwan (1977) we determine \(I \sim 2.8 \). The \(Q \)-branch profile appears rather anomalous, therefore, and it would be interesting to seek confirmatory measures.

4. M2-9

M2-9 is an extremely interesting nebula passing through what appears to be an early stage of post-main sequence evolution. Several authors have pointed to characteristics indicative of a protoplanetary structure, whilst its morphology is suggestive of a type I nebula with high shell mass \(\sim 1-2.5 M_\odot \); note however that the nitrogen abundance would then be abnormally low (Peimbert and Torres-Peimbert, 1983)). The central star has not been observed, although from photon counting procedures Calvert and Cohen (1978) adduce \(L_\nu \approx 844 (D / \text{kpc})^2 L_\odot \), and a spectral type of (at minimum) \(\sim B V \). As in the case of NGC 6302, the spectral lines show evidence of a lower velocity primary emission component, and line wings extending out to \(\sim 250 \text{ km s}^{-1} \) and possibly further (Walsh, 1981). From this it seems possible that compact (and conceivably neutral) nebular components are being wind-driven by a high velocity stellar outflow. Perhaps the most unusual features of this source, however, are the massive Balmer decrement, leading to a ratio \(H_\alpha / H_\beta \sim 30 \), and a predilection for short term variations in the outer nebular structure (Allen and Swings, 1972; van den Bergh, 1974). We will discuss these properties further in the ensuing analysis.

Using measures of the Balmer decrement Calvert and Cohen (1978) found a central extinction \(A_v \sim 5.35 \pm 0.3 \text{ mag} \), significantly higher than in the wings \(A_v \sim 2.7 \text{ mag} \), and this difference is also graphically illustrated in the published spectra of Swings and Andrillat (1979). Polarisation maps have been produced by Lacasse (1982) and King et al. (1981), and these show a relatively straightforward pattern of grain scattering outside the primary
condensations, and a collar of maximum polarised intensity between 4° and 10° from the centre. A tendency for the polarisation vectors to become parallel to the radius in at least one condensation may reflect the influence of larger grain species (cf. Martin, 1978). Either way, a substantial proportion of the polarised light is reflected directly from the (otherwise obscured) central core, whilst forbidden-line radiation primarily emanates from the less dense wings (Schmidt and Cohen, 1981).

Figure 3 shows our spectrum for the source, characterised by a steeply rising dust continuum with colour temperature 825 K – similar to the photometric estimate of Cohen and Barlow (1974). Superimposed on this are the \(\alpha \) and \(\gamma \) hydrogen Brackett lines, the \(v = 1 - 0S(1) \) transition of molecular hydrogen, and (blended with By) the high excitation 7–10 transition of H\(\beta \). The S(1) line is seen rather more clearly in Fig. 4, where we have subtracted an 825 K blackbody continuum. Note that, as for NGC 6302 (Phillips et al., 1983), no emission is seen immediately outside the core, and this suggests that appreciable shock activity may be confined to a relatively small central volume.

In what follows, we use both present and previously published results to provide a detailed evaluation of the central source structure, and from this the characteristics of the shocked H\(\beta \) zone. We also discuss observations of M2-9 in the \(J = 3 - 2 \) transition of CO and, briefly, the dynamics of both neutral and ionised mass components.

4.1. The structure of the inner core

There are several lines of evidence to indicate that the ionised core of M2-9 can be no more than \(\sim 0.1 \) in diameter; a factor \(\sim 500 \) times smaller than the optically observed lobes. This ionised zone is in turn surrounded by a 5'5 diameter volume of (probably neutral) material, which collimates the flow, and is observed through scattering as a bright central nebulosity. Since the primary arguments favouring such a scenario have not previously been brought together into a single discussion, we provide a detailed analysis below:

4.1.1. Core-size estimate based on radio continuum

From the combined radio continuum measures of Milne and Aller (1982, 1975), Purton et al. (1978), and Marsh et al. (1978), it is clear that the source is probably optically thick over a frequency range \(\nu \leq 14.7 \) GHz. If a core-halo analysis similar to that of Olston (1975) and Panagia and Felli (1975) is adopted, in which density varies with radius \(r \) as

\[
 n_\infty (r) = n_0 \left(\frac{r}{R_\infty} \right)^{-\beta}, \quad r > R_\infty, \tag{5a}
\]

\[
 n_\infty (r) = n_0 \left(\frac{r}{R_\infty} \right)^{-\beta}, \quad r \leq R_\infty, \tag{5b}
\]

then the relatively shallow spectral index \(\alpha = 0.5 \pm 0.2 \) would imply a corresponding \(\beta = 1.9^{+0.3}_{-0.2} \) (for both spherically symmetric and biconical halo structures). The turn-over frequency \(\nu_c \) and flux \(S_\nu \) for such a scenario are given through

\[
 \log S_\nu = 4.486 + \log \left[\frac{T_e^2}{D_2} \frac{1}{2} \frac{n_\infty 2n_0 R_\infty^2 \nu_c^2}{2n_0 R_\infty^2 \nu_c^2} \right], \tag{6a}
\]

\[
 \log \nu_c = -0.516 + \log \left[\frac{8}{2.1} \frac{2n_0 R_\infty^2 \nu_c^2}{T_e^{1.35}} \right], \tag{6b}
\]

where \(\nu_c \) is in GHz, \(S_\nu \) in Janskies, \(T_e \) is the electron temperature, and \(R_\infty \) and \(D_\infty \) are in parsecs. Taking the observed flux at 14.7 GHz (Milne and Aller, 1982) to represent a lower limit to \(S_\nu \), we then find values \(E = 2n_0 R_\infty > 6.4 \times 10^6 \) cm\(^{-6} \) pc, and a projected angular radius \(\theta_o < 0.078 \) for the core. From these relations it also follows that \(7.7 \times 10^{-6} \leq 2n_\infty \leq 6.4 \times 10^6 \) pc \(\nu_c \) for \(D = 1 \) kpc, whence \(n_\infty \geq 9.1 \times 10^5 \) cm\(^{-3} \). Note that although the model used here may not have detailed applicability to M2-9, the limits on \(\beta \) and \(\infty \) are reasonably secure.

A corresponding analysis for the type I bipolar NGC 6537 and NGC 6302 leads to respective core size estimates of 2\(\theta \) \(\sim 0.8 \) and 2\(\theta \); again very much smaller than the full extent of optical nebulosity, but agreeing well with the radio maps of Terzian et al. (1974) and Felli and Perinotto (1979). The H\(\beta \)/radio flux ratios similarly imply values of \(A_e \), which are substantially greater than would be deduced from the Balmer decrements, and this may indicate preferentially high levels of core extinction. Taking these and other correspondences into account, therefore, it is clear that the structure of M2-9 is by no means unique, and has indeed all the hallmarks of typical type I source (although see also our later comments concerning nebular mass).

4.1.2. Brackett lines

The ratio of Brackett \(\alpha \) to Brackett \(\gamma \) (allowing for \(A_e = 5.3 \) mag of central extinction) is found from our present results to be \(\sim 3.4; \)
some 20% greater than what would be predicted for case B [high density limit, $T_e \approx 10^4$ K; Giles (1977) and Osterbrock (1974)]. This level of disagreement is commensurate with the relative calibration uncertainties between 2 and 4 μm. Since H$_{\alpha}$/Hβ \approx 0.10 [from the published spectra of Swings and Andriat (1979) and Schmidt and Cohen (1981)] and [Hβ] \approx 3.4 \times 10^{-12} erg cm$^{-2}$ s$^{-1}$ (Milne and Aller, 1975), then we obtain [Br$_\gamma$]/[Hα] \approx 7.95 (where we have used Hα in preference to H$_{\alpha}$, since there is some evidence that Hβ may be significantly self-absorbed). This compares with an expected intrinsic ratio \approx 0.10, and implies an extinction A_v \approx 3.7 mag; very much smaller than usually assumed. This is hardly surprising, however, since the measured Hβ flux includes contributions from the lobes.

Given that the Brackett γ flux is given through

$$F(B(\gamma)) \approx 6.6 \times 10^{-27} \frac{J(B/\alpha)}{[H/\alpha]} [H/\beta] \sigma_\alpha \text{ erg cm}^{-2} \text{s}^{-1}$$

for an optically thin sphere very much smaller that the beam, subtending a solid angle σ_α, then we obtain a radius θ_0 \approx 0.041, and an emission measure $E \approx 4 \times 10^{10}$ cm$^{-6}$ pc for D \approx 1 kpc, and $n_e \approx 10^{7}$ cm$^{-3}$.

4.1.3. Core rotation

Allen and Swings (1972) and van den Bergh (1973) have noted that the extremely rapid structural changes in M2-9 may arise from rotation of the central dust core, and consequent variations in the emergent U.V. flux. From the work of Kohoutek and Surdej (1980) we determine an apparent angular rotation rate of Ω \approx 1.9 \times 10$^{-9}$ rad s$^{-1}$, and assuming rotational equilibrium of the inner core and a stellar mass M_{\ast} \approx 2.5 M$_\odot$ [characteristic of type I sources (Renzini and Voli, 1981)], then the angular radius of the rotating envelope must be \approx 0.03 at 1 kpc.

It is perhaps worth noting at this point that Kohoutek and Surdej (1980) argue for rotation of the entire nebula, out to a distance \approx 15 δ from the central star. This appears to be implausible on dynamical grounds, however. If for instance we assume the ad hoc, and exceptionally low distance of \approx 30 pc promoted by these authors, a total mass of \approx 2.7 \times 107 M$_\odot$ would be required for gravitational stability; quite outside the normal range for evolved nebulae. Increasing the distance to 1 kpc (the value of D adopted here) has the effect of increasing the required stabilising mass by a further factor of \approx 104.

Note that the value of D employed both here and in the rest of this analysis is based on the discussion of Calvet and Cohen (1978). This is by no means entirely secure, although a factor \approx 2 variation either way would not severely undermine present conclusions.

4.1.4. Radius of the inner Stromgren sphere

Calvert and Cohen (1978) have used photon-counting procedures to deduce a total central star luminosity L_\ast \approx 844 (D/kpc)$^2 L_\odot$, and a spectral class of (at minimum) BIV. The total Lyman continuum photon flux for such a star would be \approx 3.3 \times 1035 s$^{-1}$ (Panagia, 1973), which would in turn lead to a Stromgren sphere with $n_e^{2/3} R \approx$ 4.4 cm$^{-2}$ pc. Given again that $n_e \approx 10^7$ cm$^{-3}$, then we obtain θ \approx 0.02 arcseconds and E \approx 1.9 \times 1010 cm$^{-6}$ pc.

This radius, whilst confirming the small central core size, is nevertheless significantly smaller than found from the B output results. This also applies to the emission measure E, and it is clear (irrespective of uncertainties in n_e) that the central star spectral type must be significantly earlier (\approx B0.5V) than assumed above.

Such a revision is also supported by Walsh (1981) on the basis of mass flow properties.

4.1.5. Infrared flux

If the observed IR continuum reflects a range of grain temperatures (i.e., there is a temperature gradient throughout the central 5.5 nebulosity) and excesses at 1.65 μm are taken to arise from grains with temperature \approx 1000 K (close to silicate sublimation temperatures), then for grains with radius a \approx 0.6 μm, mean Planck volume emissivity $\overline{\epsilon (T)}$, and U.V. absorptivity $Q_{U.V.} = 1$, the inner radius of the dust shell occurs at

$$R_I \approx \left(\frac{3L_\ast}{64\pi a^2 T_\ast^4} \right)^{1/2}$$

If, following Aitken and Roche (1982), we further presume a silicate grain composition (i.e., $\varepsilon \approx 10^3$; Gilman, 1974), then for a B0.5V irradiating star we derive θ_0 \approx 0.056 (D/kpc)$^{-1}$. On this basis, the bulk of short wave (λ \leq 3.6 μm) emission would be expected to arise from an extremely small central region, and this is indeed observed; Allen and Swings (1972) find 2 μm emission to predominantly derive from the central \approx 12% volume of the 5.5 core.

4.1.6. High resolution mapping

Bignell (1983) has recently published a 1.46 GHz high resolution map of M2-9 taken with the VLA. This is reasonably in accord with the analysis above, and shows the central core to have a radius no greater than 0.05.

Taking all these estimates together, it is clear that a consistent picture emerges of a high emission measure core of extremely small volume. Whilst certain parameters in the analysis (such as n_e and D) are not very closely defined, the core radius almost certainly lies within a factor \approx 1.5 of R_0 \approx 0.05, with material near the inner boundary of this core ultimately responsible for the observed variations in outer shell structure. This is in turn encluded by a region with mean harmonic diameter 5.5 μm, which, although its nature is not entirely clear, is in all probability neutral. The U.V. extinction through this zone must be of order \approx 11 mag at λ \approx 0.1 μm, for instance, and the attenuation of Lyman continuum would be correspondingly severe. Similarly, an ionised zone would be expected to evolve at sonic velocities, and this degree of instability would lead to very poor outflow collimation over extended time periods (assuming the usual model for bipolar formation).

The high density of the central core can be shown to imply a large Hz optical depth τ(Hz) \approx 1.4 \times 10$^{-30}$ $n_e^2 R_0$ \approx 75 (Kaplan and Pikelon, 1970), for which circumstance substantial Balmer self-absorption would also occur. This possibility has similarly been noted by other investigators in an attempt to explain the observed lower order members of the Balmer series. The observed values of Hz/Hβ and Hβ/Hz are also consistent with a value τ(Lyα) \approx 104 appropriate for an ionisation bounded core (Cox and Mathews, 1969), although uncertainties and errors in the decrement preclude a more detailed analysis. Finally, from these ratios and the analysis of Gerola, Salem, and Panagia (1971), it is apparent that collisional ionisation from the ground state must be small, and can contribute no more than \approx 10% to the total ionisation rate.

As in the case of NGC 6302 (Phillips, Reay, and White, 1983) and NGC 7027 (Treffers et al., 1976) the HeI 7\rightarrow10 transition at λ \approx 2.19 μm appears to be relatively strong, although blended at
appears likely therefore that up to 2.6 mag of nebular extinction is due to foreground (interstellar) material, a conclusion which would also be consistent with the relatively large value of \(D \) (\(\sim 1 \) kpc) assumed here.

Note, however, that there is some evidence in other planetary systems for depressed values of \(A_v/(N(H_2)+0.5N(H)) \) compared to the interstellar medium. If this is also true of M2-9, then the masses derived above may be substantially too low, and a type I status cannot therefore be entirely precluded.

4.2. Properties of the H\(_2\) emission zone

If the H\(_2\) emission in M2-9 is taken to arise near the interface of the H\(_2\) and H\(\alpha\) zones -- that is, in a very small central volume of inner radius \(\sim 0.05 \) -- then we obtain an \(S(1) \) radiative rate \(\sim 6.0 \times 10^{34} \) erg cm\(^{-2}\) s\(^{-1}\). The rate of heat input into the shock for a pre-shock density \(n_o \), and shock velocity \(V_s \) is given by \(n_o V_s^2 (\frac{3}{2} M_H V_s^2) \). If this now equated with the \(S(1) \) radiative rate quoted above (a severe lower limit to the total cooling), then we obtain \(n_o \geq 6.7 \times 10^6 \) cm\(^{-3}\) for \(V_s \sim 15 \) km s\(^{-1}\); that is, the H\(_2\) would be appreciably thermalized.

Under these circumstances a more accurate expression for the \(S(1) \) line strength is given through Eq. (2), and this yields a surprisingly high pre-shock density \(n_o \sim 2 \times 10^8 \) cm\(^{-3}\). Such a large (and probably unrealistic) value for \(n_o \) argues in turn for significantly lower values of \(V_s \) (and this is also required on dynamical grounds; see later). For \(V_s \sim 2 \) km s\(^{-1}\), for instance, the requisite \(n_o \) would be reduced by \(\sim 2 \) to three orders of magnitude, to a point where the H\(_2\) is barely thermalized.

The relevance of a U.V. cascade model for H\(_2\) excitation is not easy to assess, although there are two lines of evidence which probably rule out such an hypothesis for M2-9. In the first place, the \(S(1) \) line \(V = 2 \sim 1 \) line at \(\lambda \sim 2.248 \) \(\mu \)m would be expected to be relatively strong for such a mechanism, of order \(\sim 0.5S(1) \)
\(V = 1 \sim 0 \), which would not be the case for collisional enhancement (Black and Dalgarno, 1976; Black et al., 1981). We observe a \(2\sigma \) upper limit \(S(1)/V = 2 \sim 0.1S(1)V = 1 \sim 0 \leq 0.26 \). Perhaps rather more crucially, however, the model for U.V. pumping which comes closest to representing present circumstances is that of Black (1978) for NGC 7027, in which molecules are excited by a \(10^8 \) K radiation field with dilution \(1.2 \times 10^{-14} \). Scaling this model to M2-9, we find that a B0.5V star with \(L \sim 2 \times 10^4 \) \(\mu \)m would produce an \(S(1) \) flux considerably less than observed here; or, putting this another way, the observed \(S(1) \) flux would require irradiation by a star with \(L \sim 2 \times 10^3 \) \(\mu \)m. Some caution is required here since the central star in M2-9 is neither as evolved nor as hot as for NGC 7027, and other nebular parameters probably also differ somewhat. Nevertheless, it appears likely that a U.V. cascade mechanism would be too inefficient for present purposes.

Isaacman (1984) has pointed to a third possible test involving the strength of \(V = 1 \sim 0S(2) \) at \(\lambda \sim 2.035 \) \(\mu \)m, which he argues should be relatively weak for U.V. cascade models. However, models by Black et al. (1981) in which associative detachment and U.V. pumping (by a \(10^8 \) K radiation field) predominate, imply a ratio \(V = 1 \sim 0S(2)/V = 1 \sim 0S(1) \) \(\sim 0.42 \). This is barely different from the predictions of a shock model [Hollenback and Shull (1977) suggest \(S(2)/S(1) = 0.27 \) to 0.39 for a velocity range \(V_s \sim 6 \sim 14 \) km s\(^{-1}\)], and given that at least two of the nebulae considered by Isaacman have Zanstra temperatures comparable to or greater than \(\sim 10^5 \) K, the detection of \(S(2)/S(1) = 1 \sim 0 \) by this author does not appear to definitively preclude U.V. pumping. Certainly, the absence of \(V = 1 \sim 0S(2) \) in M2-9 is consistent with either model, since noise levels are relatively high,

© European Southern Observatory • Provided by the NASA Astrophysics Data System
and the probable small shock velocity V_s relevant for this source implies a correspondingly low $V = 1 - 0\, S(2)$ intensity.

4.3. CO observations of the central core

Given that the central dust may have a temperature as high as $\sim 400\, K$, based on the colour temperature of the 10 μm continuum (Cohen and Barlow, 1974), and assuming the CO to be optically thick, then a 1° diffraction limited beam would detect CO lines at the $T_B \sim 10\, K$ level. With this prospect in mind we therefore investigated the $J = 3 - 2$ CO spectrum of this source in September 1983, using the QMC submillimetre wave receiver mounted on UKIRT. The measured beamsize was 55°, and the resulting spectrum is illustrated in Fig. 7. It is seen that no absorption is present at the source radial velocity above a 2σ limit of $\sim 0.4\, K$; presumably implying that either the excited temperature has been grossly overestimated, or the source is optically thin. Given that line optical depth for the $J = J + 1$ rotational transition is given through

$$\tau_{j,J+1} = \frac{3.45 \times 10^{-15}(J+1)\epsilon}{A V T_{ex}} \left[\frac{N^{(12)CO}}{N^{(12)CO}} \right]$$

for a large velocity gradient (LVG) model in which $N^{(12)CO}$ is the CO column density, then if a more conservative CO excitation temperature $T_{ex} \sim 100\, K$ is adopted [based on FIR IRAS photometry for other planetaries; Pottasch (1983)], we obtain a velocity range through the 5.5 core of $\Delta V \leq 12\, km\, s^{-1}$ (where we again assume a constant $A_{v} \sim 2.6\, mag$, and adopt $A_{v}/N(H_2) \sim 10^{-21}\, mag\, cm^{2}/N(CO)/N(H_2) \sim 10^{-4}$), implying a plausible expansion timescale $\tau_{exp} \leq 210^3\, yr$.

It is interesting in this context to note that Walsh (1981) finds splitting of the central Hz line which would suggest expansion at velocity $\sim 30\, km\, s^{-1}$. Given the small size of central core, the expansion timescale then becomes inordinately short, of order $\sim 8\, yr$. It is likely therefore that the observed Hz profiles result from components of the outflow jets orientated along the line of sight, as illustrated in Fig. 6. The outflow electron density n_e subsequently declines as $\sim r^{-2}$, from an initial value $\sim 10^{6}\, cm^{-3}$, to the typical densities $\sim 10^{3}\, cm^{-3}$ observed by Walsh (1981) outside of the main condensations $(\sim 10^6)$ from the core. The central (ionised) core itself must clearly be expanding rather slowly (at no more than $\sim 0.1 - 1\, km\, s^{-1}$), and it is interesting to envisage the possible dynamics of such a region.

For this purpose we shall assume that an expanding ionised core of radius R_c sweeps up a neutral envelope of mass

$$M_s = M_0 \left[\frac{R_s}{R_0} \right]^\beta,$$

where M_0 and R_0 are a fiducial mass and radius. For a momentum input from the stellar wind $V_{wind} dM_{wind}/dt$, the equation of motion is then given through

$$R_c^2 \frac{dV}{dR_c} + \frac{V_c}{R_c} + \beta R_c^{-1} V_c = \frac{V_{wind}}{R_0} \frac{dM_{wind}}{dt}$$

for which the simplest analytical solution with varying M_s is given by $\beta = 1$. This yields $V_c^2 \approx (V_{wind} dM_{wind}/dt)_{M_0}$ for $R_c R_s > R_c V_c$, where R_s is the initial radius of expansion, and for $V_c \sim 1\, km\, s^{-1}$, $dM_{wind}/dt \sim 10^{-5}\, M_\odot\, yr^{-1}$, $V_c = 7.5 \times 10^3\, cm$, and $V_{wind} \sim 250\, km\, s^{-1}$, we then find $M_s / M_\odot \sim 6 \times 10^{-5}$, and an expansion period $\sim 2.5 \times 10^3\, yr$).

While the model above has a purely pedagogical value, it is clear that a relatively modest size for the ionised core does not conflict with properties of the central region (insofar as these are at present understood), or indicate an implausible nebular age.

5. Conclusions

We have searched for H_2 emission in five bipolar outflow sources, and one zone of shock interaction between an HII region and molecular cloud (NGC 281). The results for most nebulae were negative, and demonstrated extremely low upper-limit masses of shocked H_2, ranging from $M(H_2) < 10^{-10}\, M_\odot$ for As 353, to a few times $10^{-8}\, M_\odot$ for V645 Cygni. Between 2.5 10^{-4} and 1.9 $10^{-5}\, M_\odot$ of H_2 appears to be present in NGC 1333 (given $10^5 \, K \leq T_{ex} \leq 210^3\, K$), although these estimates are probably somewhat low because of extinction. The observed Q branch emission level is shown to be reasonably consistent with a model of mass outflow in which $dM/dt \sim 2 \times 10^{-7}\, M_\odot\, yr^{-1}$, and $V_c \sim 10^3\, km\, s^{-1}$; parameters typical of other, similar sources. The mass of H_2 in M2-9 lies probably between $4.2 \times 10^{-8}\, M_\odot$ and $1.4 \times 10^{-6}\, M_\odot$, estimated for the $V = 1 - 0\,(S1)$ line, and appreciable HII region extent of the source. No $J = 3 - 2$ CO emission was detected above a 0.4 K level, and this is shown to be reasonably consistent with deduced source properties, given a normal interstellar value of $A_v/N(H_2)$, and an expansion timescale $\tau_{exp} \leq 210^3\, yr$. The levels of extinction derived from the higher order members of the Balmer series are broadly confirmed by the By and Bz line measures, which may in turn indicate masses $M_N < 0.1 \times (10^{-21}[N(H_2) + 0.5N(H_2)] / A_v) \times M_\odot$ for the ionised and neutral regions combined. Such low values of M_N would preclude classification as a type I nebula for normal I.S. mass absorption coefficients, and this presumption is also supported by the relatively low nitrogen abundance in this source. Morphological similarities to other type I nebulae however argue persuasively to the contrary, and the status of this object, whether type I, or protoplanetary, or perhaps even both, remains quite unresolved.

Acknowledgements. We are extremely grateful for help and assistance from Richard Wade, Peredur Williams, and the UKIRT staff.
References

© European Southern Observatory • Provided by the NASA Astrophysics Data System