Asymptotic values of strongly normal functions

Barth, Karl F. and Rippon, Philip J. (2005). Asymptotic values of strongly normal functions. Arkiv för Matematik, 43(1) pp. 69–84.

DOI: https://doi.org/10.1007/BF02383611

URL: http://link.springer.com/article/10.1007/BF0238361...

Abstract

Let f be meromorphic in the open unit disc D and strongly normal; that is,

(1 - |z|2) f# (z) → 0as|z| → 1,

where f# denotes the spherical derivative of f. We prove results about the existence of asymptotic values of f at points of C ∂D. For example, f has asymptotic values at an uncountably dense subset of C, and the asymptotic values of f form a set of positive linear measure.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About