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CONJUGACY IN THOMPSON’S GROUP F

NICK GILL AND IAN SHORT

Abstract. We complete the program begun by Brin and Squier of characterising con-
jugacy in Thompson’s group F using the standard action of F as a group of piecewise
linear homeomorphisms of the unit interval.

1. Introduction

The object of this paper is to extend the methods of Brin and Squier described in [3]
to solve the conjugacy problem in Thompson’s group F .

Let f : (a, b) → (a, b) be a piecewise linear order-preserving homeomorphism of the
open interval (a, b); the points at which f is not locally affine are called the nodes
of f . We write PLF+(a, b) to denote the group of all piecewise linear order-preserving
homeomorphisms of the open interval (a, b) which have finitely many nodes. Thompson’s
group F is the subgroup of PLF+(0, 1) defined as follows: an element f of PLF+(0, 1)
lies in F if and only if the nodes of f lie in the ring of dyadic rational numbers, Z

[
1
2

]
,

and f ′(x) is a power of 2 whenever x is not a node.

In [3] Brin and Squier analysed conjugacy in PLF+(a, b) for (a, b) any open interval.
For (a, b) equal to (0, 1) we can restate their primary result [3, Theorem 5.3] as follows:
we have a simple quantity Σ on PLF+(0, 1) such that two elements f and g of PLF+(0, 1)
are conjugate if and only if Σf = Σg. If f and g are elements of F then Σf and Σg

can be computed and compared using a simple algorithm. Brin and Squier comment
on their construction of Σ that,“Our goal at the time was to analyze the conjugacy
problem in Thompson’s group F .” In this paper we achieve Brin and Squier’s goal by
defining a quantity ∆ on F such that the following theorem holds.

Theorem 1.1. Let f, g ∈ F . Then f and g are conjugate in F if and only if

(Σf ,∆f ) = (Σg,∆g).

This is not the first solution of the conjugacy problem in F . In particular the con-
jugacy problem in F was first solved by Guba and Sapir in [5] using diagram groups.
More recently, Belk and Matucci [1, 2] have another solution using strand diagrams.
Kassabov and Matucci [6] also solved the conjugacy problem, and the simultaneous
conjugacy problem. Our analysis is different to all of these as we build on the geometric
invariants introduced by Brin and Squier.

Note that Thm. 1.1 reduces the study of roots and centralizers in F (first completed
in [5]) to a set of easy computations; we leave this to the interested reader.
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We will not prove Theorem 1.1 directly. Rather we prove the following proposition
which, given [3, Theorem 5.3], implies Theorem 1.1:

Proposition 1.2. Two elements f and g of F that are conjugate in PLF+(0, 1) are
conjugate in F if and only if ∆f = ∆g.

Our paper is structured as follows. In §2 we introduce some important background
concepts, including the definition of Σ. In §3 we define ∆. In §4 we prove Proposi-
tion 1.2. In §5 and §6 we outline formulae which can be used to calculate ∆.

2. The definition of Σ

Let f be a member of Thompson’s group F , embedded in PLF+(0, 1). Following Brin
and Squier [3] we define the invariant Σf to be a tuple of three quantities, Σ1,Σ2 and
Σ3, which depend on f .

The first quantity, Σ1, is a list of integers relating to values of the signature of f , ϵf .
We define ϵf as follows:

ϵf : (0, 1) → {−1, 0, 1}, x 7→

 1, f(x) > x;
0, f(x) = x;
−1, f(x) < x.

If f is an element of PLF+(0, 1) then there is a sequence of open intervals

I1, I2, . . . , Im, Ij = (pj−1, pj), p0 = 0, pm = 1, (2.1)

such that ϵf is constant on each interval, and the values of ϵf on two consecutive intervals
differ. We define Σ1 = (ϵf (x1), . . . , ϵf (xm)) where xi ∈ Ii for i = 1, . . . ,m.

Let fix(f) be the set of fixed points of f and observe that the points p0, . . . , pm from
(2.1) all lie in fix(f). We say that the interval Ij is a bump domain of f if ϵf is non-zero
on that interval. Our next two invariants consist of lists with entries for each bump
domain of f .

If k is a piecewise linear map from one interval (a, b) to another, then the initial
slope of k is the derivative of k at any point between a and the first node of k, and
the final slope of k is the derivative of k at any point between the final node of k and
b. The invariant Σ2 is a list of positive real numbers. The entry for a bump domain
Ij = (pj−1, pj) is the value of the initial slope of f in Ij.

To define Σ3 we need the notion of a finite function; this is a function [0, 1) → R+

which takes the value 1 at all but finitely many values. The invariant Σ3 is a list
of equivalence classes of finite functions. We calculate the entry for a bump domain
Ij = (pj−1, pj) as follows. Suppose first of all that Σ1 = 1 in Ij. Define, for x ∈ Ij, the

slope ratio f ∗(x) =
f ′
+(x)

f ′
−(x)

. Thus f ∗(x) = 1 except when x is a node of f . Now define

ϕf,j : Ij → R, x 7→
∞∏

n=−∞

f ∗(fn(x)).

Since f has only finitely many nodes, only finitely many terms of this infinite product
are distinct from 1. Let p be the smallest node of f in Ij and let p∗ be the smallest
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node of f in Ij such that ϕf,j(p∗) ̸= 1 (such a node must exist). Define, for s ∈ [0, 1),

ψf,j(s) = ϕf (λ
s(r − pj−1) + pj−1).

Here λ is the entry in Σ2 corresponding to Ij and r is any point in the interval (0, p)
which satisfies the formula r = fn(p∗) for n some negative integer.

Note that ψf,j is a finite function; furthermore, in our definition of ψf,j, we have
chosen a value for r which guarantees that ψf,j(0) ̸= 1; we can do this by virtue of [3,
Lemma 4.4].

The entry for Σ3 corresponding to Ij is the equivalence class [ψf,j], where two finite
functions c1 and c2 are considered equivalent if c1 = c2 ◦ ρ where ρ is a translation of
[0, 1) modulo 1. If f(x) < x for each x ∈ Ij then the entry for Σ3 corresponding to Ij
is the equivalence class [ψf−1,j].

3. The definition of ∆

The quantity ∆ will also be a list, this time a list of equivalence classes of tuples of
real numbers. To begin with we need the concept of a minimum cornered function.

3.1. The minimum cornered function. Take f ∈ PLF+(0, 1); in this subsection we
focus on the restriction of f to one of its bump domains D = (a, b). We adjust one
of the definitions of Brin and Squier [3]: for us, a cornered function in PLF+(0, 1) is
an element l which has a single bump domain (a, b) and which satisfies the following
property: Σ1 takes value 1 (resp. −1) in relation to (a, b) and there exists a point
x ∈ (a, b) such that all nodes of l which lie in (a, b) lie in (x, l(x)) (resp. (l(x), x)). We
will sometimes abuse notation and consider such a cornered function as an element of
PLF+(a, b).

Figure 1. A cornered function.

We say that a cornered function l corresponds to a finite function c if ψl = c (we
drop the subscript i here, since there is only one bump domain). Roughly speaking this
means that the first node of l corresponds to c(0). For a given initial slope λ there is
a unique cornered function in PLF+(a, b) such that ψl = c (this follows from [3, Prop.
4.9]; it can also be deduced from the proof of Lemma 5.2).
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Now let c : [0, 1) → R be a finite function such that [c] is the entry in Σ3 associated
with D. Within this equivalence class [c] we can define a minimum finite function cm
as follows. First define C = {c1 ∈ [c]|c1(0) ̸= 1} and define an ordering on C as follows.
Let c1, c2 ∈ C and let x be the smallest value such that c1(x) ̸= c2(x). Write c1 < c2
provided c1(x) < c2(x). We define cm to be the minimum function in C under this
ordering.

Figure 2. Two equivalent finite functions. The minimum finite function
is on the left.

Suppose that λ is the entry in Σ2 associated with D. Suppose that l is the cornered
function in PLF+(a, b), with initial slope λ, which corresponds to cm. We say that l is
the minimum cornered function associated with f over D.

3.2. The quantity ∆. Now let us fix f to be in F and define ∆ accordingly. A bump
chain is a subsequence It, It+1, . . . , Iu of (2.1) such that each interval is a bump domain,
and of the points pt−1, pt, . . . , pu only pt−1 and pu are dyadic. Thus I1, I2, . . . , Im can be
partitioned into bump chains and open intervals of fixed points of f (which have dyadic
numbers as end-points).

In [3], conjugating functions in PLF+(0, 1) are constructed by dealing with one bump
domain at a time. We will construct conjugating functions in F by dealing with one
bump chain at a time. Consider a particular bump chain D1, . . . , Ds and let fj be the
restriction of f to Dj = (aj, bj).

According to [3, Theorem 4.18], the centralizer of fj within PLF+(aj, bj) is an infinite

cyclic group generated by a root f̂j of fj. We define λj to be the initial slope of f̂j and

µj to be the final slope of f̂j. (Let mj be the integer such that f̂j
mj

= fj; then λj and
µj are the positive mjth roots of the initial and final slopes of fj.)

Next, let kj be a member of PLF+(aj, bj) that conjugates fj to the associated min-
imum cornered function, lj, in PLF+(aj, bj). Thus kj is some function satisfying the
equality kjfjk

−1
j = lj. Let αj be the initial slope of kj and let βj be the final slope.
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Consider the equivalence relation on Rs where (x1, . . . , xs) is equivalent to (y1, . . . , ys)
if and only if there are integers m,n1, . . . , ns such that

2mx1 = λn1
1 y1

µn1
1 x2 = λn2

2 y2

µn2
2 x3 = λn3

3 y3
...

µ
ns−1

s−1 xs = λns
s ys.

It is possible to check whether two s-tuples of real numbers are equivalent according
to the above relation in a finite amount of time because the quantities λi and µj are
rational powers of 2. We assign to the chain D1, . . . , Ds the equivalence class of the
s-tuple (

α1

w1

,
α2

w2

w1

β1
, . . . ,

αs

ws

ws−1

βs−1

)
where wj = bj − aj. We define ∆f to consist of an ordered list of such equivalence
classes; one per bump chain.

4. Proof of Proposition 1.2

We prove Proposition 1.2 after the following elementary lemma.

Lemma 4.1. Let f and g be maps in F , and let h be an element of PLF+(0, 1) such
that hfh−1 = g. Let D = (a, b) be a bump domain of f and suppose that the initial
slope of h in D is an integer power of 2. Then all slopes of h in D are integer powers
of 2 and all nodes of h in D occur in Z[1

2
].

Proof. Let (a, a + δ) be a small interval over which h has constant slope; suppose that
this slope is greater than 1. We may assume that f has initial slope greater than 1
otherwise replace f with f−1 and g with g−1. Now observe that hfnh−1 = gn for all
integers n and so h = gnhf−n.

Now, for any x ∈ (a, b) there is an interval (x, x + ϵ) and an integer n so that
f−n(x, x + ϵ) ⊂ (a, a + δ). Then the equation h = gnhf−n implies that, where defined,
the derivative of h over (x, x+ ϵ) is an integral power of 2. Furthermore any node of h
occuring in (x, x+ ϵ) must lie in Z[1

2
] as required.

If h does not have slope greater than 1 then apply the same argument to h−1 using
the equation h−1gh = f . �

We have two elements f and g of F and a third element h of PLF+(0, 1) such that
hfh−1 = g. We use the notation for f described in the previous section, such as the

quantities Ij, pj, fj, f̂j, kj, lj, αj, βj, wj, λj, and µj. We need exactly the same quantities
for g, and we distinguish the quantities for g from those for f by adding a ′ after each
one. In particular, we choose a bump chain D1, . . . , Ds of f and define D′

i = h(Di) for
i = 1, . . . , s. Note that D′

1, . . . , D
′
s are bump domains but need not form a bump chain

for g according to our assumptions, because h is not necessarily a member of F .
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Let the function hi = h|Di
have initial slope γi and final slope δi. Let u be the

member of PLF+(0, 1) which, for i = 1, . . . ,m, is affine when restricted to Ii, and maps
this interval onto I ′i. Notice that, restricted to D′

i, uliu
−1 is a cornered function which

is conjugate to l′i (by the map k′ihik
−1
i u−1), and which satisfies ψl′i = ψuliu−1 . Therefore

uliu
−1 = l′i. Combine this equation with the equations kifik

−1
i = li, k

′
igik

′−1
i = l′i, and

hifih
−1
i = gi to yield

(k−1
i u−1k′ihi)fi(k

−1
i u−1k′ihi)

−1 = fi.

Therefore k−1
i u−1k′ihi is in the centralizer of f , so there is an integer Ni such that

hi = (k′i)
−1ukif̂i

Ni

for each i = 1, . . . , s. Then by comparing initial and final slopes in this equation we see
that

γi = λNi
i

αi

wi

w′
i

α′
i

, δi = µNi
i

βi
wi

w′
i

β′
i

(4.1)

for i = 2, . . . , s. We are now in a position to prove Proposition 1.2.

Proof of Proposition 1.2. Suppose that h ∈ F . Then there are integersM1, . . . ,Ms such
that γ1 = 2M1 and γi = δi−1 = 2Mi for i = 2, . . . , s. Substituting these values into (4.1)
we see that

2M1
α′
1

w′
1

= λN1
1

α1

w1

, µ
Ni−1

i−1

α′
i

w′
i

w′
i−1

β′
i−1

= λNi
i

αi

wi

wi−1

βi−1

,

for i = 2, . . . , s, as required.

Conversely, suppose that ∆f = ∆g. We modify h so that it is a member of F . If Ij
is an interval of fixed points of f then modify hj so that it is any piecewise linear map
from Ij to I ′j whose slopes are integer powers of 2, and whose nodes occur in Z[1

2
]. (It

is straightforward to construct such maps, see [4, Lemma 4.2].)

Now we modify h on a bump chain D1, . . . , Ds. Since ∆f = ∆g we know that there
are integers m and n1, . . . , ns such that, for i = 2, . . . , s,

2m
α1

w1

= λn1
1

α′
1

w′
1

, µ
ni−1

i−1

αi

wi

wi−1

βi−1

= λni
i

α′
i

w′
i

w′
i−1

β′
i−1

. (4.2)

Consider the piecewise linear map h′i : Di → hi(Di) given by h′i = hif̂i
−ni−Ni

. The
initial slope γ′i of h

′
i is γiλ

−ni−Ni
i and the final slope δ′i = δiµ

−ni−Ni . From (4.1) and (4.2)
we see that

γ′1 = 2−m, γ′i = δ′i−1.

for i = 2, . . . , s. We modify h by replacing hi with h
′
i on Di. Then h does not have a

node at any of the end-points of D1, . . . , Ds other than the first and last end-point. By
Lemma 4.1, the nodes of h1 occur in Z[1

2
] and the slopes of h1 are all powers of 2. Since

the initial slope of h1 coincides with the final slope of h1, the same can be said of h2.
Similarly, for i = 2, . . . , s, the initial slope of hi coincides with the final slope of hi−1.
We repeat these modifications for each bump chain of f ; the resulting conjugating map
is a member of F . �
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5. Calculating αi and βi

It may appear that, in order to calculate ∆, it is necessary to construct various conju-
gating functions. In particular to calculate αi one might have to construct the function
in PLF+(ai, bi) which conjugates fi to the conjugate minimum cornered function in
PLF+(ai, bi).

It turns out that this is not the case. The values for αi and βi can be calculated simply
by looking at the entries in Σ1,Σ2 and Σ3 which correspond to Di. In this section we
give a formula for αi; we then observe how to use the formula for αi to calculate βi.

In what follows we take f to be a function in PLF+(a, b) such that f(x) ̸= x for x ∈
(a, b). Let l be the minimum cornered function which is conjugate to f in PLF+(a, b).

5.1. Calculating αi. Suppose first that f(x) > x for x ∈ (a, b). Let yj, for j = 0, . . . , t
be the points at which the finite function ψf does not take value 1; let ψf take the
positive value zj at the point yj and assume that 0 = y0 < y1 < · · · < yt < 1. We will
denote ψf by ct and define cj = ct(x+ yj+1). Then cj is a translation of ct under which
yj is mapped to the last point of cj which does not take value 1.

Let uj be the cornered function corresponding to cj and let xj be the final node of
uj. Note that uj is conjugate to f and, for j equal to some integer n, uj equals l, the
minimum cornered function. Define the elementary function hx,r to be the function
which is affine on (0, x) and (x, 1) and which has slope ratio r at x. We define ζj to be
the initial slope of the elementary function hxj ,zj .

Let p be the first node of f and let q be the first node of ut.

Lemma 5.1. There exists k in PLF+(a, b) such that kfk−1 = l and the initial slope of
k is

(ζtζt−1 . . . ζn+1)

(
q − a

p− a

)
.

Note that, in the formula just given, p and q stand for the x-coordinates of the
corresponding nodes. Before we prove Lemma 5.1 we observe that we can calculate
values for the ζj and q simply by looking at Σ2 and Σ3 and using the following lemma:

Lemma 5.2. Let l be a cornered function in PLF+(a, b) with initial slope λ > 1, and
suppose that the corresponding finite function c takes the value 1 at all points in [0, 1)
except 0 = s0 < s1 < · · · < sk < 1, at which c(si) = zi. Then the first node q0 of l is
given by the formula

q0 = a+ (b−a)(1−[λz0···zk])
[λ(1−z0)]+[λs1+1z0(1−z1)]+···+[λsk−1+1z0···zk−2(1−zk−1)]+[λsk+1z0···zk−1(1−zk)]

, (5.1)

and the initial slope ζ of the elementary function hqk,zk , where qk is the final node of l,
is given by

ζ =
b− a

λsk(q0 − a)(1− zk) + (b− a)zk
. (5.2)

Proof. If q0, . . . , qk are the nodes of l we have equations

λsi(q0 − a) + a = qi, i = 0, 1, 2, . . . , k. (5.3)
7



Define qk+1 = b and let λi be the slope of l between the nodes qi−1 and qi for i =
1, . . . , k + 1. Then zi = λi/λi−1 for i > 1, and we obtain

λi = λz0 . . . zi−1, i = 1, . . . , k + 1. (5.4)

If we substitute (5.3) and (5.4) into the equation

b− a = λ(q0 − a) + λ1(q1 − q0) + λ2(q2 − q1) + · · ·+ λk+1(b− qk),

then we obtain (5.1). To obtain (5.2), notice that zkζ is the final slope of hqk,zk , therefore
b− a = ζ(qk − a) + zkζ(b− qk). Substitute the value of qk from (5.3) into this equation
to obtain (5.2). �

Before we prove Lemma 5.1, we make the following observation. Let g be a function
such that g(x) > x for all x ∈ (a, b) and suppose that g has nodes p1 < · · · < ps. Now let
h = hps,g∗(ps). Then hgh−1 has nodes h(p1), . . . , h(ps−1), hg

−1(ps) with (hgh−1)∗ taking
on values g∗(p1), . . . g

∗(pt) at the respective nodes. If hg−1(ps) = h(pi) for some i, then
(hgh−1)∗ has value g∗(pi)g

∗(ps).

Proof of Lemma 5.1. The formula given in Lemma 5.1 arises as follows. We start by
finding the conjugator from f to the cornered function ut; then we cycle through the
cornered functions uj until we get to un = l. Thus the q−a

p−a
part of the formula arises

from the initial conjugation to a cornered function, and the ζj’s arise from the cycling.

Consider this cycling part first and use our observation above on the cornered func-
tions, uj: we have hxj ,zjuj(hxj ,zj)

−1 = uj−1. Thus in order to move from ut to un we
repeatedly conjugate by elementary functions with initial gradient ζt, . . . , ζn+1.

We must now explain why we can use q−a
p−a

for the first conjugation which moves from

f to ut. It is sufficient to find a function which conjugates f to ut and which is linear
on [a, p].

Consider the effect of applying an elementary conjugation to a function f that is not
a cornered function. Suppose that f has nodes p1 < · · · < ps. So p = p1. We consider
the effect of conjugation by an elementary function h = hps,f∗(ps) as above. To reiterate,
we obtain a function with nodes

h(p1), ...., h(ps−1), hf
−1(ps)

Now observe that, since f ∗(ps) < 1, h(x) > x for all x and h is linear on [a, ps]. So
clearly h is linear on the required interval. There are three possibilities:

• If hf−1(ps) < h(p) then f was already a cornered function; in fact f = ut. We
are done.

• If hf−1(ps) > h(p) then we simply iterate. We replace f with hfh−1, p with
h(p) etc. We conjugate by another elementary function exactly as before. It is
clear that the next elementary conjugation will be linear on [a, h(p)] which is
sufficient to ensure that the composition is linear on [a, p].

• If hf−1(ps) = h(p) then we need to check if hfh−1 is a cornered function. If
so then hfh−1 = ut, the corner function we require. If hfh−1 is not a cornered
function then we iterate as above, replacing f with hfh−1. It is possible that
h(p) will no longer be the first node of hfh−1, but in this case we replace p by

8



h(p2). Since [a, h(p2] ⊃ [a, h(p)] this is sufficient to ensure that the composition
is linear on [a, p].

We can proceed like this until the process terminates at a cornered function. Since
conjugating a non-cornered function by h preserves ψ we can be sure that we will
terminate at ut as required. What is more the composition of these elementary functions
is linear on [a, p]. �

Suppose next that f(x) < x for all x ∈ (a, b) and kfk−1 = l, a minimum cornered
function. Observe that kf−1k−1 = l−1 and f−1(x) > x for all x ∈ (a, b). We can now
apply the formula in Lemma 5.1, replacing f with f−1 and l with l−1, to get a value for
the initial slope of k.

5.2. Calculating βi. The method we have used to calculate αi can also be used to
calculate βi. Define

τ : [a, b] → [a, b], x 7→ b+ a− x.

Now τ is an automorphism of PLF+(a, b); the graph of a function, when conjugated by
τ, is rotated 180◦ about the point ( b+a

2
, b+a

2
). Consider the function τfτ and let k be

the conjugating function from earlier, so that kfk−1 = l. Then

(τkτ)(τfτ)(τkτ)−1 = (τ lτ).

The initial slope of τkτ equals the final slope of k. Thus we can use the method
outlined above – replacing f with τfτ and l with τ lτ – to calculate the initial slope of
τkτ . Note that, for this to yield βi, we must make an adjustment to the integer n in
the formula in Lemma 5.1: the function τ lτ is not necessarily the minimum cornered
function which is conjugate to τfτ . Thus we choose n to ensure that l is minimum
rather than τ lτ .

6. Calculating λi and µi

Let f be a fixed-point free element of PLF+(a, b). Let f̂ be a generator of the
centralizer of f within PLF+(a, b). The formula for ∆ requires that we calculate the

initial slope and the final slope of f̂ . It turns out that this is easy—thanks to the work
of Brin and Squier [3].

Let c, c′ : [0, 1) → R be finite functions. We say that c′ is the p-th root of c provided
that, for all x ∈ [0, 1), we have c(x) = c′(px). The property of having a p-th root is
preserved by the equivalence used to define Σ3. Thus we may talk about the equivalence
class [c] having a p-th root, provided any representative of [c] has a p-th root.

Now [3, Theorem 4.15] asserts that f has a p-th root in PLF+(a, b), for p a positive
integer, if and only if the single equivalence class in Σ3 is a p-th power (following Brin
and Squier we say that this class has p-fold symmetry). What is more [3, Theorem 4.18]

asserts that f̂ must be a root of f .

Thus if p is the largest integer for which the single class in Σ3 has p-fold symmetry

then f̂ is the p-th root of f . The initial slope of f̂ is the positive p-th root of the initial

slope of f , and the final slope of f̂ is the positive p-th root of the final slope of f .
9
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