Inverse Batschelet distributions for circular data

Jones, M. C. and Pewsey, Arthur (2012). Inverse Batschelet distributions for circular data. Biometrics, 68(1) pp. 183–193.

DOI: https://doi.org/10.1111/j.1541-0420.2011.01651.x

Abstract

We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet’s (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About