Copy the page URI to the clipboard
Narendranath, S.; Athiray, P. S.; Sreekumar, P.; Kellett, B. J.; Alha, L.; Howe, C. J.; Joy, K. H.; Grande, M.; Huovelin, J.; Crawford, I. A.; Unnikrishnan, U.; Lalita, S.; Subramaniam, S.; Weider, S. Z.; Nittler, L. R.; Gasnault, O.; Rothery, D.; Fernandes, V. A.; Bhandari, N.; Goswami, J. N.; Wieczorek, M. A.; C1XS Science Team; Anand, Mahesh; Holland, Andrew and Gow, Jason
(2011).
DOI: https://doi.org/10.1016/j.icarus.2011.04.010
URL: http://www.sciencedirect.com/science/article/pii/S...
Abstract
The Chandrayaan-1 X-ray Spectrometer (C1XS) flown on-board the first Indian lunar mission Chandrayaan-1, measured X-ray fluorescence spectra during several episodes of solar flares during its operational period of ~9 months. The accompanying X-ray Solar Monitor (XSM) provided simultaneous spectra of solar X-rays incident on the Moon which are essential to derive elemental chemistry. In this paper, we present the surface abundances of Mg, Al, Si, Ca and Fe, derived from C1XS data for a highland region on the southern nearside of the Moon. Analysis techniques are described in detail including absolute X-ray line flux derivation and conversion into elemental abundance. The results are consistent with a composition rich in plagioclase with a slight mafic mineral enhancement and a Ca/Al ratio that is significantly lower than measured in lunar returned samples. We suggest various possible scenarios to explain the deviations.