Fractional distance measures for content-based image retrieval

Howarth, Peter and Rüger, Stefan (2005). Fractional distance measures for content-based image retrieval. In: 27th European Conference on Information Retrieval (ECIR '05), 21-23 Mar 2005, Santiago de Compostela, Spain, Springer LNCS 3408, pp. 447–456.

DOI: https://doi.org/10.1007/978-3-540-31865-1_32

URL: http://www-gsi.dec.usc.es/ecir05/

Abstract

We have applied the concept of fractional distance measures, proposed by Aggarwal et al. [1], to content-based image retrieval. Our experiments show that retrieval performances of these measures consistently outperform the more usual Manhattan and Euclidean distance metrics when used with a wide range of high-dimensional visual features. We used the parameters learnt from a Corel dataset on a variety of different collections, including the TRECVID 2003 and ImageCLEF 2004 datasets. We found that the specific optimum parameters varied but the general performance increase was consistent across all 3 collections. To squeeze the last bit of performance out of a system it would be necessary to train a distance measure for a specific collection. However, a fractional distance measure with parameter p = 0:5 will consistently outperform both L1 and L2 norms.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

Recommendations