Pasch trades with a negative block

Drizen, A.L.; Grannell, Mike and Griggs, Terry (2011). Pasch trades with a negative block. Discrete Mathematics, 311(21) pp. 2411–2416.

DOI: https://doi.org/10.1016/j.disc.2011.06.023

Abstract

A Steiner triple system of order $v$, STS($v$), may be called \emph{equivalent} to another STS($v$) if one can be converted to the other by a sequence of three simple operations involving Pasch trades with a single negative block. It is conjectured that any two STS($v$)s on the same base set are equivalent in this sense. We prove that the equivalence class containing a given system $S$ on a base set $V$ contains all the systems that can be obtained from $S$ by any sequence of well over one hundred distinct trades, and that this equivalence class contains all isomorphic copies of $S$ on $V$. We also show that there are trades which cannot be effected by means of Pasch trades with a single negative block.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About

Recommendations