Copy the page URI to the clipboard
Hosseinzadeh, F.; Smith, D. J. and Truman, C. E.
(2009).
DOI: https://doi.org/10.1179/174328408X363335
Abstract
There is little experimental knowledge about the initial state of through thickness residual stresses in rolls and sleeves for the steel rolling industry. This is surprising bearing in mind the impact that residual stress has on the performance of the roll and sleeve materials in the highly aggressive loading environments of the metal working industry. Previous work has been confined to measurement of very near surface residual stresses and numerical predictions of residual stress distributions. In the present paper through thickness residual stress measurements were carried out using a deep hole drilling technique on a series of rolls and sleeves representative of those used in the rolling industry. Different features of the manufacturing processes used in their production are shown to influence the magnitude and distribution of the residual stresses. It is also shown that the measurements can be used, together with a finite element analysis, to determine the volumetric distribution of the residual stresses.