Copy the page URI to the clipboard
Morlok, A.; Koike, C.; Tomioka, N.; Mann, I. and Tomeoka, K.
(2010).
DOI: https://doi.org/10.1016/j.icarus.2009.11.018
Abstract
We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10-49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21-34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material. The infrared spectra of the shocked Murchison samples show similarities to astronomical spectra of dust in various young stellar objects and debris disks. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21-34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0-49 GPa) has a similarity to the spectrum of the older proto-planetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples also show similarities to the dust fromcomets (C/2002 V1, C/2001 RX14, 9P/Tempel 1, and Hale Bopp), suggesting that the comets also contain shocked Murchison-like material.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 26703
- Item Type
- Journal Item
- ISSN
- 0019-1035
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set The 21st Century "COE program of Origin and Evolution of Planetary Systems" of the Ministry of Education, Culture, Sports, Science and Technology in Japan Not Set Not Set Open Research Center at Kinki University, Osaka - Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2009 Elsevier Inc.
- Depositing User
- Andreas Morlock