Copy the page URI to the clipboard
Acar, Murat; Gungor, Salih; Bouchard, Peter and Fitzpatrick, M. E.
(2010).
Abstract
Heat exchanger units used in steam raising power plant are often manufactured using many metres of austenitic stainless steel tubes that have been plastically formed (bent and swaged) and welded into complex shapes. The amount of plastic deformation (pre-straining) before welding varies greatly. This has a significant effect on the mechanical properties of the welded tubes and on the final residual stress state after welding. The aim of the present work was to measure and understand the combined effects of pre-straining and welding on the properties and residual stress levels in stainless steel tubing weldments. Effects of plastic deformation were simulated by plastically straining three identical stainless steel tubes to different strain levels (0%, 10% and 20%). Then each tube was cut into two halves and welding back together. The variation in mechanical properties across weldments was measured using digital image correlation (DIC) and a series of strain gauges (SG). Residual stresses were measured on the 0% (undeformed) and 20% prestrained and welded tubes by neutron diffraction. It was found that the welding process had a marked effect on the tensile properties of parent material within 25mm of the weld centre-line. Evidence of cyclic strain hardening was observed in the tube that had not been pre-strained, and evidence of softening seen in the 10% and 20% pre-strained tubes. Macroscopic residual stresses were measured to be near zero at distances greater than 25 mm from the weld centre-line, but measurements in the 20% pre-strained tube revealed the presence of micro residual stresses having a magnitude of up to 50 MPa.