Copy the page URI to the clipboard
Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S. and Märk, T. D.
(2010).
DOI: https://doi.org/10.1103/PhysRevA.81.012711
Abstract
Fragmentation ratios and branching ratios are measured for ionization and dissociative ionization for 20–150 keV (0.9–2.4v0) proton collisions with gas-phase uracil molecules. Through event-by-event determination of the postcollision projectile charge, it is possible for such a key biomolecule to distinguish between electron capture (EC) by the incident proton and direct ionization (DI) without projectile neutralization. While the same fragment ion groups are observed in the mass spectra for both processes, EC induces dissociation with greater efficiency than DI in the impact energy range of 35–150 keV (1.2–2.4v0). In this range EC is also less abundant than DI with a branching ratio for EC/total ionization of <50%. Moreover, whereas fragmentation ratios do not change with energy in the case of EC, DI mass spectra show a tendency for increased fragmentation at lower impact energies.